1.4 The Tangent and Velocity Problem

What is a tangent? A tangent to a curve is a line that touches the curve. It should have the same direction as the curve at the point of contact.

For a circle: A tangent is a line that intersects the circle once and only once.

For more complicated curves: Consider a curve C and a point P on the curve:

Let’s look at a concrete example to see how we might get something like line t.

Goal: Find an equation of the tangent line to the curve $y = x^2$ at the point $(1, 1)$.

Recall that in order to find the equation of the line, we have to know the slope of the line (either by using the slope-intercept formula for a line or the point-slope formula for a line). In order to find the slope of a line, we need to know two points that lie on the line. This is a problem for us since we only know one point on the line, the point of tangency $(1, 1)$.

Question: How can we find the slope m of the tangent line to the curve $y = x^2$ at the point $(1, 1)$.

We can compute an approximation to m by choosing a nearby point on the parabola and computing the slope of the secant line.

Example 1. *Find the slope of the secant line of the curve for $x = 1$ and $x = 2$.
Example 2. Find the slope of the secant line of the curve for \(x = 1 \) and \(x = 1.5 \).

Example 3. Find the slope of the secant line of the curve for \(x = 1 \) and \(x = 1.1 \).

Example 4. Find the slope of the secant line of the curve for \(x = 1 \) and \(x = 1.01 \).

Example 5. Find the slope of the secant line of the curve for \(x = 1 \) and \(x = 1.001 \).

Example 6. Find the slope of the secant line of the curve for \(x = 0 \) and \(x = 1 \).

Example 7. Find the slope of the secant line of the curve for \(x = 0.5 \) and \(x = 1 \).
Example 8. Find the slope of the secant line of the curve for \(x = 0.9 \) and \(x = 1 \).

Example 9. Find the slope of the secant line of the curve for \(x = 0.99 \) and \(x = 1 \).

Example 10. Find the slope of the secant line of the curve for \(x = 0.999 \) and \(x = 1 \).

Summarizing what we have found so far in a table of values (rounding to 3 decimal places), we have

<table>
<thead>
<tr>
<th>(x = 1) to (x =)</th>
<th>0</th>
<th>0.5</th>
<th>0.9</th>
<th>0.99</th>
<th>0.999</th>
<th>1.001</th>
<th>1.01</th>
<th>1.1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{sec})</td>
<td></td>
</tr>
</tbody>
</table>

Question: Do you notice anything interesting?

So, it appears that \(m = \) _________. If so, then we can use the point-slope form of the equation of a line to write the equation of the tangent line through \((1, 1)\) as
Many functions that occur in science are not described by explicit equations; they are defined by experimental data.

Example 11. A cardiac monitor is used to measure the heart rate of a patient after surgery. It compiles the number of heartbeats after \(t \) minutes. When the data in the table are graphed, the slope of the tangent line represents the heart rate in beats per minute.

<table>
<thead>
<tr>
<th>(t) (min)</th>
<th>36</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartbeats</td>
<td>2530</td>
<td>2661</td>
<td>2806</td>
<td>2948</td>
<td>3080</td>
</tr>
</tbody>
</table>

The monitor estimates this value by calculating the slope of a secant line. Use the data to estimate the patient’s heart rate after 42 minutes using the secant line between the points with the given values of \(t \).

- a) \(t = 36 \) and \(t = 42 \)
- b) \(t = 38 \) and \(t = 42 \)
- c) \(t = 40 \) and \(t = 42 \)
- d) \(t = 42 \) and \(t = 44 \)

What are your conclusions?

In real life, the velocity of a car is not constant. The needle of the speedometer doesn’t stay still for very long. We assume from watching the speedometer that the car has a definite velocity at each moment, but how is this instantaneous velocity defined?

Example 12. A ball is dropped from the top of LEX LUTHOR: Drop of Doom, 415 feet above the ground, and its height \(h \) above the ground \(t \) seconds after being dropped is given by \(h(t) = 415 - 16t^2 \). What is the velocity of the ball after 5 seconds?