3.2 The Mean Value Theorem

Rolle’s Theorem: Let f be a function that satisfies the following three hypotheses:

1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b).
3. $f(a) = f(b)$

Then there is a number c in (a, b) such that $f'(c) = 0$.

Proof:

Example 1. Verify that $f(x) = x^3 - x^2 - 6x + 2$ satisfies the three hypotheses of Rolle’s Theorem on $[0, 3]$. Then find all numbers c that satisfy the conclusion of Rolle’s Theorem.
Example 2. Let $f(x) = \tan x$.

a) Show that $f(0) = f(\pi)$ but there is not number c in $(0, \pi)$ such that $f'(c) = 0$.

b) Why does this not contradict Rolle’s Theorem?

Our main use of Rolle’s Theorem is in proving the following important theorem.

The Mean Value Theorem (MVT): Let f be a function that satisfies the following hypotheses:

1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

or, equivalently,

Let’s first look at a figure to justify this theorem.
Proof of MVT:
Example 3. Let $f(x) = x^3 - 3x + 2$.

a) Verify that f satisfies the hypotheses of the MVT on the interval $[-2, 2]$.

b) Find all numbers c that satisfy the conclusion of the MVT.
Example 4. Let \(f(x) = 2 - |2x - 1| \).

a) Show that there is no value of \(c \) such that \(f(2) - f(0) = f'(c)(2 - 0) \).

b) Why does this not contradict the MVT?

The MVT can be interpreted as saying that there is a number at which the instantaneous rate of change is equal to the average rate of change over an interval.

Example 5. At 2:00PM a car’s speedometer reads 30 mi/hr. At 2:10PM it reads 50 mi/hr. Show that at some time between 2:00 and 2:10, the acceleration is exactly 120 mi/hr\(^2\).
The main significance of the MVT is that it enables us to obtain information about a function from information about its derivative.

Example 6. Suppose that f satisfies the conditions of the MVT and that $3 \leq f'(x) \leq 5$ for all values of x. Show that $18 \leq f(8) - f(2) \leq 30$.

Example 7. Suppose that $f(0) = -3$ and $f'(x) \leq 5$ for all values of x. How large can $f(2)$ possibly be?
The MVT can be used to establish some basic facts of differential calculus:

If \(f'(x) = 0 \) for all \(x \) in an interval \((a,b)\), then \(f \) is constant on \((a,b)\).

Proof:

If \(f'(x) = g'(x) \) for all \(x \) in an interval \((a,b)\), then \(f - g \) is constant on \((a,b)\); that is, \(f(x) = g(x) + c \) where \(c \) is a constant.

Proof: