3.4 Limits at Infinity; Horizontal Asymptotes

Recall: If \(x \) approaches \(a \) and the result is that the values of \(y \) become arbitrarily large (positive or negative), then \(x = a \) is a _______________________

In this section, we will investigate _______________________. That is, we will investigate what happens to the function \(y = f(x) \) as \(x \) becomes arbitrarily large.

Example 1. Let \(f(x) = \frac{x^2 - 1}{x^2 + 1} \). Use the table to investigate what happens to \(f(x) \) as \(x \) becomes large.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-1)</th>
<th>(-10)</th>
<th>(-100)</th>
<th>(-1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 2. Let \(f(x) = \frac{x^2 - 1}{x^2 + 1} \). Use the graph to investigate what happens to \(f(x) \) as \(x \) becomes large.

Let \(f \) be a function defined on some interval \((a, \infty)\). Then

means that the values of \(f(x) \) can be made arbitrarily close to \(L \) by taking \(x \) sufficiently large.

Let \(f \) be a function defined on some interval \((-\infty, a)\). Then

means that the values of \(f(x) \) can be made arbitrarily close to \(L \) by taking \(x \) sufficiently large negative.
Another notation for \(\lim_{x \to \infty} f(x) = L \) is

Again, the symbol \(\infty \) does not represent a number. The expression \(\lim_{x \to \infty} f(x) = L \) is often read as

Some geometric illustrations of \(\lim_{x \to \infty} f(x) = L \):

\[\text{Myth: A function cannot cross or touch an asymptote.} \]

\[\text{Truth: As long as the function passes the VLT, the function can cross or touch any asymptote.} \]

The line \(y = L \) is called a ____________________________ of the curve \(y = f(x) \) if either
Example 3. Find the infinite limits, limits at infinity, and asymptotes for the function f whose graph is shown below.

Example 4. Find $\lim_{x \to \infty} \frac{1}{x}$ and $\lim_{x \to -\infty} \frac{1}{x}$.
Most of the Limit Laws also hold for limits at infinity.

If \(r > 0 \) is a rational number, then

If \(r > 0 \) is a rational number such that \(x^r \) is defined for all \(x \), then

Example 5. Evaluate

\[
\lim_{x \to \infty} \frac{4x^3 + 6x^2 - 2}{2x^3 - 4x + 5}
\]

Indicate which properties of limits are used at each stage.
Example 6. Find the horizontal and vertical asymptotes of the function

\[f(x) = \frac{\sqrt{4x^2 + 3x + 2}}{x - 9} \]
Example 7. Compute \(\lim_{x \to \infty} (\sqrt{x^2 - 2x} - x) \).

Example 8. Evaluate \(\lim_{x \to \infty} \sin \frac{1}{x} \).

Example 9. Find the limit or show that it does not exist.
\[
\lim_{x \to \infty} \frac{1 - x^2}{x^3 - x + 1}
\]
The notation

is used to indicate that the values of $f(x)$ become large as x becomes large. Similar meanings are attached to the following symbols:

Example 10. Find $\lim_{x \to \infty} x^5$ and $\lim_{x \to -\infty} x^5$.

Example 11. Find $\lim_{x \to \infty} x^2 - x^4$.

Example 12. Find $\lim_{x \to \infty} \frac{1 + x^6}{x^4 + 1}$.
SUMMARY: Let \(f(x) = \frac{p(x)}{q(x)} \), where \(p \) and \(q \) are polynomials.

1. If \(\text{deg}(p) = \text{deg}(q) \),

2. If \(\text{deg}(p) < \text{deg}(q) \),

3. If \(\text{deg}(p) > \text{deg}(q) \),

Precise Definitions:

Let \(f \) be a function defined on some interval \((a, \infty)\). Then

means that for every \(\varepsilon > 0 \) there is a corresponding number \(N \) such that

This says that the values of \(f(x) \) can be made arbitrarily close to \(L \) (within a distance \(\varepsilon \), where \(\varepsilon \) is any positive number) by taking \(x \) sufficiently large (larger than \(N \), where \(N \) depends on \(\varepsilon \)).

Graphically,
Let f be a function defined on some interval (a, ∞). Then

means that for every $\varepsilon > 0$ there is a corresponding number N such that

Graphically,

Similar definitions apply for limits as $x \to -\infty$.

Example 13. Find a formula for a function that has vertical asymptotes $x = 1$ and $x = 3$ and horizontal asymptote $y = 1$.
Example 14. A tank contains 5000 L of pure water. Brine that contains 30 g of salt per liter of water is pumped into the tank at a rate of 25 L/min.

a) Show that the concentration of salt after \(t \) minutes (in grams per liter) is

\[
C(t) = \frac{30t}{200 + t}
\]

b) What happens to the concentration as \(t \to \infty \)?