6.4 Derivatives of Logarithmic Functions

Goal: Find the derivatives of the logarithmic functions \(y = \log_a x \) and the exponential functions \(y = a^x \).

We will start with finding the derivative of \(y = \ln x \).

Example 1. Differentiate the function.

a) \(f(x) = \ln(\sin^2 x) \)

b) \(f(u) = \frac{u}{1 + \ln u} \)

c) \(f(x) = \ln |x| \)
The result of THE LAST EXAMPLE is worth remembering:

The corresponding integration formula is:

Example 2. Evaluate the integral.

a) \[\int_{0}^{3} \frac{dx}{5x + 1} \]

b) \[\int \frac{\sin(\ln x)}{x} \, dx \]
c) \[\int \frac{e^x}{e^x + 1} \, dx \]

General Logarithmic and Exponential Functions

Recall: By the Change of Base Formula:

Thus, \(\frac{d}{dx} [\log_a x] \) is:

We also can now find the derivative of exponential functions \(y = a^x \):
Example 3. Differentiate the function.

\(a) \quad f(x) = \log_{5}(xe^{x}) \)

\(b) \quad g(x) = x \sin(2^{x}) \)

\(c) \quad y = \log_{2}(e^{-x} \cos \pi x) \)

\(d) \quad F(t) = 3^{\cos 2t} \)
Example 4. Find the domain of \(f(x) = \sqrt{2 + \ln x} \) and differentiate \(f \).

Example 5. Evaluate \(\int x^2 \cdot 2^x \, dx \)

Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking logarithms. The method used in the following example is called ________________________________.

Steps in Logarithmic Differentiation:

1. Take natural logarithms of both sides of an equation \(y = f(x) \) and use the properties of logarithms to simplify.
2. Differentiate implicitly with respect to \(x \).
3. Solve the resulting equation for \(y' \).
Example 6. Use logarithmic differentiation to find the derivative of the function.

a) \(y = \frac{e^{-x} \cos^2 x}{x^2 + x + 1} \)

b) \(y = \sqrt{x}e^{x^2-x}(x + 1)^{2/3} \)
c) \(y = x^{\cos x} \)

d) \(y = (\sin x)^{\ln x} \)
The Number e as a Limit

We have shown that if $f(x) = \ln x$, then $f'(x) = 1/x$. Thus, $f'(1) = 1$. We now use this fact to express the number e as a limit.

Estimating numerically:

If we let $n = \frac{1}{x}$, then $n \to \infty$ as $x \to 0^+$. Thus,