Sleep and Consciousness

Sleep and Dreaming
The Neural Basis of Consciousness
Sleep and Dreaming

- Consciousness is tough to study... but sleep is
 - readily observable, consists of different levels of consciousness, and can be studied scientifically

- The purpose of sleep is unclear.
 - Restorative Hypothesis: busier we are, more sleep we need
 - Species with higher metabolic rates typically spend more time in sleep
 - CSF circulates during sleep to remove toxins
 - Adaptive Hypothesis
 - The amount of sleep depends on the availability of food and on safety considerations.
 - Vulnerable animals without shelter (cattle) and those that need to spend hours feeding (elephants) sleep very little.
Sleep and Dreaming

Figure 15.1: Time Spent in Daily Sleep for Different Animals

<table>
<thead>
<tr>
<th>Animal</th>
<th>Sleep Time (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown bat</td>
<td>19.9</td>
</tr>
<tr>
<td>Armadillo</td>
<td>17.4</td>
</tr>
<tr>
<td>Cat</td>
<td>13.2</td>
</tr>
<tr>
<td>Rhesus monkey</td>
<td>11.8</td>
</tr>
<tr>
<td>Red fox</td>
<td>9.8</td>
</tr>
<tr>
<td>Human</td>
<td>8.0</td>
</tr>
<tr>
<td>African elephant</td>
<td>3.9</td>
</tr>
<tr>
<td>Horse</td>
<td>2.5</td>
</tr>
<tr>
<td>Kangaroo</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Sleep and Dreaming

Figure 15.2: The Suprachiasmatic Nucleus.

- **Circadian rhythms**
 - Many industrial accidents occur between midnight & 4:00 a.m.
 - Suprachiasmatic nucleus (SCN) is the main “clock”
 - Zeitgebers: environmental light based stimuli that regulate sleep/wake cycle via the retinohypothalamic pathway
 - **Melatonin**, a sleep-inducing hormone released by pineal gland is suppressed by light.
 - Without light, our circadian rhythm tends to increase to 25 hours
• Rhythms During Waking and Sleeping
 • **Ultradian rhythms** are cycles that are shorter than a day
 • The basic rest and activity cycle is 90-100 minutes long
 • The ‘after lunch’ siesta or break coincides with a natural ultradian rhythm rest period.

Sleep and Dreaming

Figure 15.4: Retinal Ganglion Cells Containing Melanopsin.

Sleep and Dreaming

Figure 15.5: Electroencephalogram and the Stages of Sleep

- Electroencephalogram (EEG) measurement
- Awake: Beta waves (alertness) and Alpha waves (relaxation)
- Stage 1: Theta waves
- Stage 2: Sleep spindles and K complexes
- Stages 3 and 4 are slow wave sleep (SWS) with delta waves

Figure 15.6: Time Spent in Various Sleep Stages During the Night

- The sleeper returns through the stages in reverse order, and then heads into REM sleep for the first time
- Thereafter the percentage of SWS declines with each subsequent cycle
- Cycling through each series of stages takes about 90 minutes.
Sleep and Dreaming

Figure 15.7: Improvement in Learning Following Sleep.

- Functions of REM and Non-REM Sleep
 - REM Sleep
 - Activation-Synthesis Hypothesis
 - During REM sleep, forebrain integrates brainstem neural activity with information stored in memory
 - REM sleep promotes childhood neural development
 - REM also promotes maturation of higher brain centers
 - REM also provides opportunities for memory consolidation
Sleep and Dreaming

- Functions of REM and Non-REM Sleep
 - Non-REM Sleep
 - Slow wave sleep responds to temperature
 - Slow wave sleep may promote cerebral recovery
Sleep and Dreaming

Figure 15.8: Correlation of Slow-Wave and REM Sleep With Overnight Task Improvement.

• Sleep and Memory
 • REM sleep promotes memory via theta rhythms in the hippocampus
 • Both REM and slow wave sleep are needed for consolidation
 • The reverse learning hypothesis states that memories are purged during REM sleep.

SOURCE: Adapted with permission from Stickgold et al., “Sleep, Learning, and Dreams: Off-line Memory Reprocessing,” Science, 294, 1052–1057. © 2001 American Association for the Advancement of Science. Reprinted with permission from AAAS.
Sleep and Dreaming

Figure 15.9: Brain Mechanisms of Sleep.

• Brain Structures of Sleep and Waking
 • Sleep Controls
 • Adenosine accumulates in **basal forebrain area** and preoptic area during wakefulness, ultimately induces drowsiness
 • Preoptic area and pons particularly important for sleep regulation
Figure 15.10: Arousal Structures of Sleep and Waking

- **Basal forebrain area**
 - Inhibits arousal-producing neurons, inducing drowsiness and reduces EEG.

- **Waking and Arousal**
 - Major pathway 1: PPT/LDT
Sleep and Dreaming

Figure 15.11: Firing Rates in Brain Stem Arousal Centers During Waking and Sleep

- Waking and Arousal
 - The Ventromedial POA inhibits activity in Major Pathway 2: which includes the Tuberomammillary nucleus of the Hypothalamus, Locus coeruleus (NE) and raphé nucleus (S)
 - These areas are active while awake, quiet during non-REM, silent during REM.

(a)

(b)
Sleep and Dreaming
Figure 15.12: Locations of Orexin Receptors in the Rat Brain

• Waking and Arousal
 • Arousing pathway
 • Lateral hypothalamus releases orexin (hypocretin) to prevent the brain from switching into sleep.

Waking and Arousal
- Pons: the source of PGO waves
 - Excitation travels from pons through lateral geniculate to occipital area
 - PGO waves trigger EEG desynchrony of REM
- The pons sends impulses to the magnocellular nucleus in the medulla to produce REM atonia (paralysis)
- Disordered atonia is seen in cataplexy, a form of narcolepsy
Sleep Disorders

Figure 15.14: Effects of Disrupted Circadian Rhythm on Sleep.

- **Insomnia**
 - Inability to sleep or obtain quality sleep
 - Can shorten the lifespan and may contribute to obesity
 - Triggers include stress, depression and using sleeping pills. It is more common in people with mental health issues.
- **Drugs used in treatment can be addictive**
- **Circadian phase delay or advance**
 - Desynchrony between body temperature and sleep period
Sleep Disorders

• **Sleepwalking**
 • Occurs during slow wave sleep
 • Can be triggered by stress, alcohol and sleep deprivation
 • Individual may engage in complex behavior while sleepwalking

• **REM Sleep Behavior Disorder**
 • Characterized by physical activity during REM sleep and can lead to injury
 • Often associated with a neurological disorder or a tumor
Narcolepsy

- Fall into REM sleep suddenly during waking hours
- Cataplexy (a symptom) is when person has sudden experience of atonia - full body paralysis while fully awake.
- 85% have mutation of HLA-DQ6 gen, which reduces orexin
- Not unique to humans: some breeds of dogs are prone to it.

SOURCE: Courtesy of Stanford University Center for Narcolepsy.
Sleep Disorders

• Sleep as a Form of Consciousness
 • Lucid dreamers are aware of when they are dreaming and in some cases can control the nature of the dream
 • The gradations of sleep lead us to confront the question of what defines consciousness
The Neural Basis of Consciousness

Figure 15.17: Synchronized Activity Among Areas Involved in Learning.

- **Awareness**
 - Awareness of something specific is easier to study than pure awareness
 - Binding problem: how the brain combines information about an object
 - Synchronized 40-Hz activity between V1 and V5 in cats.

The Neural Basis of Consciousness

Figure 15.18: Setup for Demonstrating the Cheshire Cat Effect

- **Attention**
 - How the brain allocates limited resources to focus on some inputs while excluding others.
 - **Cheshire cat effect**: Binocular rivalry example

- **Physiological process**
 - Changes in attention matched with changes in neural activity
 - Thalamus is a critical region
 - Dorsal Attention network allows us to direct our attention (toward a goal or object)
 - Also requires working memory and other brain areas
The Neural Basis of Consciousness

• Sense of Self
 • Self recognition, sense of agency
 • Body Image (my tongue, my hand, etc)
 • Mirror neurons for social ‘understanding’

• Memory
 • A sense of self would likely be severely impaired by the loss of long term, but not necessarily short-term, memory.
 • Confabulation suggests the importance of memory to self identity
The Neural Basis of Consciousness

Figure 15.20: (a) The Anterior Cingulate and (b) the Insula

- **Sense of Self**
 - Self recognition, sense of agency
 - Body image
 - Anterior cingulate and Insula involved in sense of body image

SOURCE: (a) Courtesy of Heal Collection, University of Utah. (b) Reproduced with the permission of the Museum of neuroanatomy Tomas A Mascitti; Institute of Cognitive Neurology (INECO)
The Neural Basis of Consciousness

Figure 15.21: Brain Areas Involved in the Sense of Agency

- **Sense of Self**
 - Self recognition, sense of agency
 - Anterior cingulate and Insula involved in sense of body image

The Neural Basis of Consciousness

• Sense of Self

 • Self, Theory of Mind, and Mirror Neurons
 • Mirror neurons (Ch14) responsible for social understanding
 • Understanding intentions of others (figure below)

The Neural Basis of Consciousness

Figure 15.24: Split-Brain Patient Engaged in the Task Described in the Text.

- Disorders of Self
 - Split Brains
 - Surgical separation of the hemispheres
 Observe different aspects of consciousness
 - **Brain interpreter**
 - Likely located in the left hemisphere
 - Integrates all cognitive processes

SOURCE: Gazzaniga (2002). Based on an illustration by John W. Karpelou, BioMedical Illustrations.
The Neural Basis of Consciousness

Figure 15.25: Chris Sizemore

• **Dissociative Identity Disorder (DID)**
 • (multiple personality disorder)
 • Shifts in consciousness and behavior suggesting distinct personalities
 • ‘Alters’ (distinct personalities) differ from one another in skin conductance, cardiovascular measure, and EEG.
 • 90-95% report childhood abuse
 • May be a mechanism to cope with extreme stress
The Neural Basis of Consciousness

Figure 15.26: Hippocampal Activity During the Switch Between Multiple Personalities

- **Dissociative Identity Disorder (DID)**
 - Increasing incidence raised questions of how many cases are “real”
 - Amnesia associated with DID may be state-dependent learning
 - MRI data suggest learning mechanisms may be involved

The Neural Basis of Consciousness

Figure 15.27: Map of Event Related Potentials to Masked and Unmasked Visually Presented Words.

• Network Explanations
 • Theories require a widely distributed neuronal network
 • Theorized to be coordination of this network
 • Crick suggested claustrum is executive center or director of consciousness

The Neural Basis of Consciousness

IN THE NEWS: Consciousness and the

• Near Death Experiences
 • 3% have experienced this state
 • Out of body experience

• Brain mechanisms
 • Widespread, synchronized brain activity
 • Similar to aroused brain

The Neural Basis of Consciousness

Figure 15.28: Awareness and Arousal in Normal and Impaired Consciousness.

The Neural Basis of Consciousness

APPLICATION: Determining Consciousness When It Counts

Conscious controls (n = 110) Vegetative state (n = 33)

Locked-in syndrome (n = 5) Minimally conscious state (n = 7)