The Evolution of Microorganisms and Microbiology
The Importance of Microorganisms

- Most populous and diverse group of organisms
- Found everywhere on the planet
- Play a major role in recycling essential elements
- Source of nutrients and some carry out photosynthesis
- Benefit society by their production of food, beverages, antibiotics, and vitamins
- Some cause disease in plants and animals
Members of the Microbial World

• Organisms and acellular entities too small to be clearly seen by the unaided eye
 – some < 1 mm, some macroscopic

• These organisms are relatively simple in their construction and lack highly differentiated cells and distinct tissues
Organisms and biological entities studied by microbiologists can be

- **Cellular**
 - **Fungi**
 - e.g. Yeasts, Molds
 - **Protists**
 - e.g. Algae, Protozoa, Slime molds
 - **Bacteria**
 - e.g. *Escherichia coli*
 - **Archaea**
 - e.g. Methanogens

- **Acellular**
 - **Viruses**
 - composed of Protein and nucleic acid
 - **Viroids**
 - composed of RNA
 - **Satellites**
 - composed of Nucleic acid, often RNA
 - **Prions**
 - composed of Protein
Type of Microbial Cells

• Prokaryotic cells lack a true membrane-delimited nucleus
 – this is not absolute, there are prokaryotes with membrane bound structures and other eukaryotic characteristics

• Eukaryotic cells have a membrane-enclosed nucleus, are more complex morphologically, and are usually larger than prokaryotic cells
Classification Schemes

- Three domain system, based on a comparison of ribosomal RNA genes, divides microorganisms into
 - *Bacteria* (true bacteria),
 - *Archaea*,
 - *Eukarya* (eukaryotes)
Domain *Bacteria*

- Prokaryotic
- Usually single-celled
- Majority have cell wall with peptidoglycan
- Most lack a membrane-bound nucleus
- Ubiquitous and some live in extreme environments
- Cyanobacteria produce significant amounts of oxygen
Domain *Archaea*

- Prokaryotic
- Distinguished from *Bacteria* by unique rRNA gene sequences
- Lack peptidoglycan in cell walls
- Have unique membrane lipids
- Some have unusual metabolic characteristics
- Many live in extreme environments
Domain *Eukarya* - *Eukaryotic*

- Protists – generally larger than *Bacteria* and *Archaea*
 - algae – photosynthetic (photolithoautotrophs)
 - protozoa – chemoorganoheterotrophs
 - slime molds – two life cycle stages (protist-like and fungus-like)
 - water molds – devastating disease in plants
- Fungi
 - yeast - unicellular
 - mold - multicellular
Acellular Infectious Agents

• Viruses
 – smallest of all microbes
 – requires host cell to replicate
 – cause range of diseases, some cancers

• Viroids and Satellites (previously called virusoids)
 – infectious agents composed of RNA

• Prions – infectious proteins
Origins of Life

- Microbial fossils
 - Swartkoppie chert – granular silica
 - 3.5 billion years old
- Fossil record sparse
- Indirect evidence and scientific method are used to study origins of life
- 533–525 mya—Cambrian explosion creates diverse animal life.
- 520 mya—First vertebrates; first land plants.
- 450 mya—Large terrestrial colonization by plants and animals.
- 300 mya—Reptiles first appear.
- 225 mya—Dinosaurs and mammals first appear.
- 7 mya—Hominids first appear.

- 1.5 bya—Multicellular eukaryotic organisms first appear.
- 2.5–2.0 bya—Eukaryotic cells first appear.
- 3.5 bya—Fossils of primitive filamentous microbes.
- 3.8–3.5 bya—First cells appear.
Earliest Molecules - RNA

- Original molecule must have fulfilled protein and hereditary function
- Ribozymes
 - RNA molecules that form peptide bonds
 - perform cellular work and replication
- Earliest cells may have been RNA surrounded by liposomes
Earliest Molecules – RNA - 2

• Cellular pool of RNA in modern day cells exists in and is associated with the ribosome (rRNA, tRNA, mRNA)
 – RNA catalytic in protein synthesis
 – RNA may be precursor to double stranded DNA

• Adenosine 5’ triphosphate (ATP) is the energy currency and is a ribonucleotide

• RNA can regulate gene expression
Earliest Metabolism

• Early energy sources under harsh conditions
 – inorganics, e.g., FeS

• Photosynthesis
 – cyanobacteria evolved 2.5 billion years ago
 – stromatolites – mineralized layers of microorganisms

© Dirk Wiersma/SPL/Photo Researchers, Inc.
Evolution of 3 Domains of Life

- Universal phylogenetic tree
 - based on comparisons of small subunit rRNA (SSU rRNA)
 - aligned rRNA sequences from diverse organisms are compared and differences counted to derive a value of evolutionary distance
 - relatedness, but not time of divergence, is determined this way

- relatedness, but not time of divergence, is determined this way
Last Universal Common Ancestor (LUCA)

- The root or origin of modern life is on bacterial branch but nature still controversial
- *Archaea* and *Eukarya* evolved independently of *Bacteria*
- *Archaea* and *Eukarya* diverged from common ancestry
Endosymbiotic Hypothesis

- Origin of mitochondria, chloroplasts, and hydrogenosomes from endosymbiont
- Mitochondria and chloroplasts
 - SSU rRNA genes show bacterial lineage
 - Genome sequences closely related to *Rickettsia* and *Prochloron*, respectively
- Hydrogenosomes
 - Anaerobic endosymbiont
Evolution of Cellular Microbes

- Mutation of genetic material led to selected traits
- New genes and genotypes evolved
- *Bacteria* and *Archaea* increase genetic pool by horizontal gene transfer within the same generation (HGT – gene transfer from one mature microbe to another)
Microbial Species

- Eukaryotic microbes fit definition of reproducing isolated populations
- *Bacteria* and *Archaea* do not reproduce sexually and are referred to as strains
 - a strain consists of descendents of a single, pure microbial culture
 - may be biovars, serovars, morphovars, pathovars (variants with respect to morphology, physiology, antibody production, etc.)
- binomial nomenclature - genus and species epithet: ex. *Escherichia coli* or *Escherichia coli*
 - genus is capitalized and italicized (or underlined)
 - species is in lowercase and italicized (or underlined)
 - After first use, can be abbreviated *E. coli* or *E. coli*
Microbiology - Origins

• Study of microorganisms
• Tools used for the study
 – microscopes
 – culture techniques
 – molecular genetics
 – genomics
Discovery of Microorganisms

- Antony van Leeuwenhoek (1632-1723)
 - first person to observe and describe microorganisms accurately
The Conflict over Spontaneous Generation

• Spontaneous generation
 – Idea that living organisms can develop from nonliving or decomposing matter

• Francesco Redi (1626-1697)
 – discredited spontaneous generation
 – showed that maggots on decaying meat came from fly eggs
But Could Spontaneous Generation Be True for Microorganisms?

• John Needham (1713-1781)
 – his experiment:
 mutton broth in flasks \rightarrow boiled \rightarrow sealed
 – results: broth became cloudy and contained microorganisms

• Lazzaro Spallanzani (1729-1799)
 – his experiment:
 broth in flasks \rightarrow sealed \rightarrow boiled
 – results: no growth of microorganisms
Louis Pasteur (1822-1895)

• ‘Swan-neck flask’ experiments
 – placed nutrient solution in flasks
 – created flasks with long, curved necks
 – boiled the solutions
 – left flasks exposed to air

• results: no growth of microorganisms
Microbes being destroyed

Vigorous heat is applied.

Broth free of live cells (sterile)

Neck on second sterile flask is broken; growth occurs.

Neck intact; airborne microbes are trapped at base, and broth is sterile.
Final Blow to Theory of Spontaneous Generation

• John Tyndall (1820-1893)
 – demonstrated that dust carries microorganisms
 – showed that if dust was absent, nutrient broths remained sterile, even if directly exposed to air
 – also provided evidence for the existence of exceptionally heat-resistant forms of bacteria

• Ferdinand Cohn (1828-1898)
 – heat-resistant bacteria could produce endospores
The Role of Microorganisms in Disease

• Was *not* immediately obvious

• Infectious disease believed to be due to supernatural forces or imbalances of 4 bodily-fluid ‘humors’

• Establishing connection depended on development of techniques for studying microbes
Evidence for the Relationship between Microorganisms and Disease

• Agostini Bassi (1773-1856)
 – showed that a disease of silkworms was caused by a fungus

• M. J. Berkeley (ca. 1845)
 – demonstrated that the great Potato Blight of Ireland was caused by a water mold

• Heinrich de Bary (1853)
 – showed that smut and rust fungi caused cereal crop diseases
More Evidence...

• Louis Pasteur
 – demonstrated microorganisms carried out fermentations, helping French wine industry
 – developed pasteurization to avoid wine spoilage by microbes
 – showed that the pébrine disease of silkworms was caused by a protozoan
Other Evidence…

• Joseph Lister
 – provided indirect evidence that microorganisms were the causal agents of disease
 – developed a system of surgery designed to prevent microorganisms from entering wounds as well as methods for treating instruments and surgical dressings
 – utilized phenol as an antimicrobial and sterilized instruments with heat
 – his patients had fewer postoperative infections
Final Proof…

• Robert Koch (1843-1910)
 – established the relationship between *Bacillus anthracis* and anthrax
 – used criteria developed by his teacher Jacob Henle (1809-1895)
 – these criteria now known as Koch’s postulates

 • still used today to establish the link between a particular microorganism and a particular disease
Postulate

1. The microorganism must be present in every case of the disease but absent from healthy organisms.

2. The suspected microorganisms must be isolated and grown in a pure culture.

3. The same disease must result when the isolated microorganism is inoculated into a healthy host.

4. The same microorganisms must be isolated again from the diseased host.

Experimentation

Koch developed a staining technique to examine human tissue. *Mycobacterium tuberculosis* could be identified in diseased tissue.

Koch grew *M. tuberculosis* in pure culture on coagulated blood serum.

Koch injected cells from the pure culture of *M. tuberculosis* into guinea pigs. The guinea pigs subsequently died of tuberculosis.

Koch isolated *M. tuberculosis* in pure culture on coagulated blood serum from the dead guinea pigs.
Limitations of Koch’s Postulates

• Some organisms cannot be grown in pure culture
• Using humans in completing the postulates is unethical
• Molecular and genetic evidence may replace and overcome these limits
The Development of Techniques for Studying Microbial Pathogens

• Koch’s work led to discovery or development of:
 – agar
 – Petri dishes
 – nutrient broth and nutrient agar
 – methods for isolating microorganisms
Other Developments...

- Charles Chamberland (1851-1908)
 - developed porcelain bacterial filters used by Ivanoski and Beijerinck to study tobacco mosaic disease
 - determined that extracts from diseased plants had infectious agents present which were smaller than bacteria and passed through the filters
 - infectious agents were eventually shown to be viruses
Other Developments...

• Pasteur and Roux
 – discovered that incubation of cultures for long intervals between transfers caused pathogens to lose their ability to cause disease (termed ‘attenuation’)

• Pasteur and his coworkers
 – developed vaccines for chicken cholera, anthrax, and rabies
Immunological Studies

• once established, led to study of host defenses - immunology

• Edward Jenner (ca. 1798)
 – used a vaccination procedure to protect individuals from smallpox

 NOTE: this preceded the work establishing the role of microorganisms in disease!
More Developments…

• Emil von Behring (1854-1917) and Shibasaburo Kitasato (1852-1931)
 – developed antitoxins for diphtheria and tetanus
 – evidence for humoral (antibody-based) immunity

• Elie Metchnikoff (1845-1916)
 – discovered bacteria-engulfing, phagocytic cells in the blood
 – evidence for cellular immunity
The Development of Industrial Microbiology and Microbial Ecology

• Louis Pasteur
 – demonstrated that alcohol fermentations and other fermentations were the result of microbial activity
 – developed the process of pasteurization to preserve wine during storage
Developments in Microbial Ecology

• Sergei Winogradsky (1856-1953) and Martinus Beijerinck (1851-1931)
 – studied soil microorganisms and discovered numerous interesting metabolic processes (e.g., nitrogen fixation)
 – pioneered the use of enrichment cultures and selective media
Microbiology Has Basic and Applied Aspects

• Basic aspects are concerned with individual groups of microbes, microbial physiology, genetics, molecular biology and taxonomy

• Applied aspects are concerned with practical problems – disease, water, food and industrial microbiology
Molecular and Genomic Methods

- Led to a second golden age of microbiology (rapid expansion of knowledge)
- Discoveries
 - restriction endonucleases (Arber and Smith)
 - first novel recombinant molecule (Jackson, Symons, Berg)
 - DNA sequencing methods (Woese, Sanger)
 - bioinformatics and genomic sequencing and analysis
Major Fields in Microbiology

- Medical microbiology – diseases of humans and animals
- Public health microbiology – control and spread of communicable diseases
- Immunology – how the immune system protects a host from pathogens
More Fields…

• Microbial ecology is concerned with the relationship of organisms with their environment
 – less than 1% of earth’s microbial population has been cultured

• Agricultural microbiology is concerned with the impact of microorganisms on agriculture
 – food safety microbiology
 – animal and plant pathogens
More Fields….

• Industrial microbiology began in the 1800s
 – fermentation
 – antibiotic production
 – production of cheese, bread, etc.

• Microbial physiology studies metabolic pathways of microorganisms
More Fields....

• Molecular biology, microbial genetics, and bioinformatics study the nature of genetic information and how it regulates the development and function of cells and organisms

• Microbes are a model system of genomics