Engage New York Curriculum – Hart District Revised

Curriculum Map

Number and quantity

Strong			Module	/Lesson	in Engage	New Yor	ĸ	Evenale
Strand	CCSS	Alg	ebra 1	Geo	metry	Alg	ebra 2	Example
The Real Number system	N-RN	Taught	Assume Mastery	Taught	Assume Mastery	Taught	Assume Mastery	
Extend the properties of exponents to								
rational exponents								
Explain how the definition of the	N-RN.1	CA				M3TA		
meaning of rational exponents follows								
from extending the properties of integer								
exponents to those values. Allowing for								
radicals in terms of rational exponents.								
Rewrite expressions involving radicals	N-RN.2	СА				МЗТА		
and rational exponents using properties								
of exponents								
Use properties of rational and irrational								
numbers								
Explain why the sum or product of two	N-RN.3	СА					M1	
rational numbers is rational; that the		M4TB						
sum of a rotational number and an								
irrational number is irrational; and the								
product of a nonzero rational number								
and an irrational number is irrational.								

Strend	0055		Module	/Lesson iı	Evample			
Strand	CLSS	Algebra 2		ora 1 Geometry		Algebra 2		Example
Quantities	N-Q	Taught	Assume	Taught	Assume	Taught	Assume	
			Mastery		Mastery		Mastery	
Use units as a way to understand	N-Q.1	СА	M3				M1	
problems and to guide the solution of		M1TA						
multi-step problems; choose and		M1TD						
interpret units consistently in formulas;								
choose and interpret the scale and the								
origin o graphs and data display.								
Define appropriate quantities for the	N-Q.2	СА	M3			M1TB		What does this look like in module
purpose of descriptive modeling.		M1TA	M4					5?
		M5TA						What does this look like in alg 2
		M5TB						m3tb
Choose a level of accuracy appropriate	N-Q.3	CA	M3					What does this look like in module
to limitations on measurement when		M1TA	M4					5?
reporting quantities.		M5TB						

Strend	2222	Module	e/Lesson in Engage	Example	
Strand	CLSS	Algebra 1	Geometry	Algebra 2	Example
The Complex Number System	N-CN				
Perform arithmetic operations with					
complex numbers					
Know there is a complex number <i>I</i> such	N-CN.1			CA	
that i^2 = -1, and every complex number has				M1TD	
the form a + b <i>i</i> with a and b real					
Use the relation $i^2 = -1$ and the	N-CN.2			CA	
commutative, associative, and distributive				M1TD	
properties to add, subtract, and multiply					
complex numbers		_			
Solve quadratic equations with real	N.CN.7			CA	
coefficients that have complex solutions				M1TD	
Use Complex numbers in polynomial					
identities and equations					
Extend polynomial identities to the	N.CN.8(+)			СА	
complex numbers					
Know the Fundamental Theorem of	N.CN.9(+)			CA	
Algebra; show that it is true for quadratic					
polynomials.					

Strand	2222	Module/Lesson in Engage New York								
Stranu	CCSS	Alge	Algebra 1 Geometry Algebra 2				Example			
Seeing Structure in Expression	A-SSE									
Interpret the structure of expressions		Taught	Assume Mastery	Taught	Assume Mastery	Taught	Assume mastery			
Interpret expressions that represent a quantity in terms of its context	A-SSE.1							A-SSE1.A how do you assume mastery in M3 but		
Interpret parts of an expression, such as terms, factors, and coefficients.	A-SSE.1A	CA M1TD M4TA M4TB	M3			CA	M1	focus on it in M4?		
Interpret complicated expressions by viewing one or more of their parts as a single entity.	A-SSE.1B	CA M1TD M4TA M4TB	M3			CA	M1			
Use the structure of an expression to identify ways to rewrite it	A-SSE.2	CA M1TB M4TA M4TB	M3			M1TA M1TB		What does this look like in Module 3? How assume mastery in M3 but focus in M4		
Write expressions in equivalent forms to solve problems										
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.								Need to find out where A- SSE 3.b is taught		
Factor a quadratic expression to reveal the zeros of the function it defines.	A-SSE.3.a	CA M4TA M4TB					M1			
Complete the square in a quadratic expression to reveal the maximum and minimum value of the function it defines.	A-SSE3.b	CA M4TB								
Use properties of exponents to transform expressions for exponential functions	A-SSE.3.c	M3TD								
Derive the formula for the sum of finite geometric series (when the common ration	A-SSE.4					CA				

is not 1), and use the formula to solve				
problems.				

Strond	2222		Module	/Lesson iı	Fyomolo			
Strand	CLSS	Alge	ebra 1	Geo	metry	Alge	ebra 2	Example
Arithmetic with Polynomials and Rational Expressions	A-APR							
Perform arithmetic operations on polynomials (beyond quadratic)		Taught	Assume Mastery	Taught	Assume Mastery	Taught	Assume Mastery	
Understand that polynomials form a system analogous to the integers, namely they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	A-APR.1	CA M1TB M4TA				CA	M1	
Understand the relationship between zeros and factors of polynomials.								
Know and apply the Remainder Theorem	A-APR.2					CA M1TB		
Identify zeros of polynomials when suitable factorizations are available and use the zero's to construct a rough graph of the function defined by the polynomials.	A-APR.3	M4TB				CA M1TB		
Use polynomials Identities to solve problems								
Prove polynomial identities and use them to describe numerical relationships.	A-APR.4					CA M1TA		
Know and apply the binomial theorem for the expansion of $(x + y)^n$ in powers of x and y for a positive integer n, where z and y are numbers, with coefficients determined for example by Pascal's Triangle.	A-APR.5(+)					CA		

Rewrite rational expressions (linear and quadratic denominators)				
Rewrite simple rational expressions in different ways; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, q(x), and R9x) are polynomials with the degree of $r(x)$ less than the degree of b(x), using inspection, long division, or for the more complicated examples, a computer generated algebra system.	A-APR.6		CA M1Tc	
Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division; add, subtract, multiply, and divide.	A-APR.7(+)		CA	

Strand	CC55		Module	/Lesson i	Evampla			
Stranu	CCSS	Alge	ebra 1	Geo	metry	Alge	ebra 2	Example
Creating Equations	A-CED	Taught	Assume Mastery	Taught	Assume Mastery	Taught	Assume Mastery	
Create equations and inequalities in on variable including ones with absolute value and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions	A-CED.1	CA M1TD M3TD M4TA M4TB M5TB				CA M3TB	M1	What is the difference between alg 1 and alg2
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	A-CED.2	CA M1TA M1TD M4TA M4TB M4TC M5TA M5TB	М3			CA	M1	What does this look like in module 4? Double check module 3how assume mastery but then focus in mod 4
Represent constraints by equations or inequalities, and by systems of equation and/or inequalities and interpret solutions as viable or non-viable options in modeling context.	A-CED.3	CA M1TC	M3			CA	M1	
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	A-CED4	CA M1TC	M3 M4			CA	M1	

Streen d	0000		Modu	le/Lesson	Example			
Strand	CLSS	Alg	ebra 1	Geo	metry	Al	gebra 2	Example
Reasoning with Equations and Inequalities	A-REI							
Understand solving equations as a process of reason and explain the reasoning.		Taught	Assume Mastery	Taught	Assume Mastery	Taught	Assume Mastery	
Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solutions.	A-REI.1	CA M1TC	M3 M4			M1TB		Where is this taught in the previous modules?
Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	A-REI.2					CA M1TC M1TD		
Solve equations and inequalities in one variable.								
Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	A-REI.3	CA M1TC M1TD	M3 M4				M1	
Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in context.	A-REI.3.1 (California standard)	CA (only)				CA		
Solve quadratic equations in one variable	A-REI.4							Students in algebra will not be expected to write solutions for quadratic equations that have roots with nonzero imaginary
Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^2 = q$ that have the same solutions. Derive the quadratic formula from this	A-REI.4a	СА М4ТВ					M1	parts.

Solve quadratic equations by inspection, taking square roots, completing the square, the quadratic formula and factoring as appropriate to the form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi.	A-REI.4b	CA M4TA M4TB			M1TB		
Solve systems of equations							
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	A-REI.5	CA M1TC				M1	
Solve systems of linear equations exactly and approximately, focusing on pairs of linear equations	A-REI.6	CA M1TC	M3	M4	M1TC		
Solve a simple system consisting of a linear equation and quadratic equation in two variables algebraically and graphically.	A-REI.7	CA			M1TC M1TD		
Represent and solve equations and inequalities graphically.							
Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plan, often forming a curve.	A-REI.10	CA M1TC	M3 M4			M1	
Explain why the x-coordinates of the points where the graph of the equations y = f(x) and $y = g(x)$ intersect are the solutions of the equations $f(x) = g(x)$.	A-REI.11	CA M3TC M4TA			CA M3TD	M1	
Graph the solutions to linear inequality in two variables as a half-plan, and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	A-REI.12	CA M1TC		М4			

Functions

Strond	CC55		Module/L	esson in Engag	e New York		Fyample
Strand	CCSS	Alg	ebra	Geometry	Algebra 2		Example
Interpret Functions	F-IF						
Understand the concept of function and							
use function notation.							
Understand that a function from one set	F-IF.1	CA	M4				
(called the domain) to another set		M3TA					
(called the range) assigns to each		МЗТВ					
element of the domain exactly one							
element of the range.							
Use function notation, evaluate	F-IF.2	CA	M4				
functions for inputs in their domain, and		M3TA					
interpret statements that use function		МЗТВ					
notation in terms of a context.		C A					
Recognize that sequences are functions,	F-IF.3						
domain is a subset of integers		IVISTA					
domain is a subset of integers.			_		-		
Interpret functions that arise in							
applications in terms of the context.			_		_	-	
For a function that models a relationship	F-IF.4	CA			CA		
between two quantities, interpret key		МЗТВ					
features of graphs and tables in terms of		M3TD					
the quantities, and sketch the graphs							
showing key realures given a verbal							
description of the relationships.							
Relate the domain of a function to its	E-IE 5				CA		
graph and where applicable to the	1 11.5	M3TB			CA		
quantitative relationship it describes.		M4TA					
		M5TA					
		M5TB					
Calculate and interpret the average rate	F-IF.6	CA			СА		
of change of a function over a specified		M3TA					
interval. Estimate the rate of change		M3TD					
from a graph.		M4TA					

		M4TB			
		M4TC			
		M5TB			
Analyze functions using different					
representations					
Graph functions expressed symbolically	F-IF.7.				F-IF.7.ewhat is it for algebra and
and show key features of the graph, by					where is it taught
hand in simple cases and using					
technology in more complicated cases					
Graph linear and quadratic functions and	F-IF.7A	CA	M5		
show intercepts, maxima, and minima		МЗТВ			
		M4TA			
		M4TB			
Graph square root, cube root, and	F-IF.7.b	CA	M5	CA	
piecewise-defined functions including		МЗТС			
step functions and absolute value		M4TC			
functions					
	F-IF.7.c			CA	
Graph exponential and logarithmic	F-IF 7 e	CA		CA	
functions, showing intercepts and end	1 11.7.10	C/ Y		Cri	
behavior, and trigonometric functions.					
showing period, midline, and amplitude					
Write a function defined by an	F-IF.8			СА	
expression in different but equivalent					
forms to reveal and explain different					
properties of the function.					
Use the process of factoring and	F-IF.8.a	CA	M5		
completing the square in a quadratic		M4TB			
function to show zeros, extreme values,		M4TC			
an symmetry of the graph, and interpret					
these in terms of a context.					
Use the properties of exponents to	F-IF.8.b	CA			
interpret expressions for exponential					
functions.					
Compare properties of two functions	F-IF.9	CA	M5	CA	
each represented in different ways.		M3TD			
		M4TC			

Strond	2222		Module/	Lesson in En	Fuerrale		
Strand	CCSS	Alge	ebra 1	Geomet	ry Al	gebra 2	Example
Building functions	F-BF						
Build a function that models a							
relationship between two quantities.							
Write a function that describes a	F-BF.1.						1b???
relationship between two quantities.							
Determine an explicit expression, a	F-BF.1a	CA	M4				
recursive process, or steps for calculation		M3TA					
from a context		M3TD					
		M5TA					
		M5TB					
Combine standard function types using	F-BF1.b	CA					
arithmetic operations.							
Write arithmetic and geometric	F-BF.2	CA					
sequences both recursively and with an							
explicit formula, use them to model							
situations, and translate between the two							
forms.							
Build new functions from existing							
functions							
Identify the effect on the graph of	F-BF.3	CA			CA		
replacing $f(x)$ by $f(x) + k$, and $f(x + k)$ for		M3TC					
specific values of k (both positive and		M4TC					
negative); find the values of k given the							
graphs. Include recognizing even and odd							
functions from their graphs and algebraic							
expression for them							
Find inverse functions	F-BF.4.a	CA			CA		

Strond	CC55	Module/	Lesson in Engage I	Evampla	
Strand	CLSS	Algebra 1	Geometry	Algebra 2	Example
Linear, Quadratic, and Exponential Models	F-LE				
Construct and compare linear, quadratic, and exponential models to solve problems					
Distinguish between situations that can be modeled with linear functions and with exponential functions.	F-LE.1				
Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.	F-LE.1.a	CA M3TA			
Recognize situations in which on quantity changes at a constant rate per unit interval relative to another.	F-LE.1.b	CA M3TA M5TA M5TB			
Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	F-LE.1.C	CA M3TA M5TA M5TB			
Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relations, or two input- output pairs.	F-LE.2	CA M3TA M3TD M5TA			
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or as a polynomial function.	F-LE.3	СА МЗТА			
For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a,c, and d are numbers and the base b is 2, 10 or e; evaluate the logarithm using technology.	F-LE.4				
Prove simple laws of logarithms	F-LE4.1 CA standard			СА	

Use the definition of logarithms to	F-LE.4.2				СА	
translate between logarithms in any base.	CA standard					
Understand and use the properties of	F-LE.4.3				CA	
logarithms to simplify logarithmic numeric expressions and to identify their approximate value.	CA standard					
Interpret expressions for functions in terms of the situation modeled.						
Interpret the parameters in a linear or exponential function in terms on context.	F-LE.5	CA M3TD	M5			
Apply quadratic functions to physical	F-LE.6	СА				
problems such as motion of an object		СА				
under the force of gravity.		only				

Strand	2222	N	lodule/Le	esson in l	Engage N	Example		
Stranu	CC35	Alge	ebra	Geor	netry	Algebra 2		Example
Trigonometric Functions	F-TF							
Extend the domain of trigonometric								
functions using the unit circle.								
Understand radian measure of angle as the	F-TF.1					CA		
length of the arc on the unit circle								
subtended by the angle.								
Explain how the unit circle in the	F-TF.2					CA		
coordinate plane enables the extension of								
trigonometric functions to all real								
numbers, interpreted as radian measures								
of angles traversed counterclockwise								
around the unit circle.								
Graph all six basic trigonometric functions	F.TF.2.1					CA		
	CA standard							

Strand	CC55	M	odule/Le	sson in E	ngage No	Evomalo		
Stranu	(135	Algebra Geometry Alge		Algebra 2		Example		
Model periodic phenomena with								
trigonometric function								
Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.	F-TF.5					СА		

Strand	2200	Moc	dule/Les	sson in E	ngage No	Evampla		
Stranu	(133	Algeb	Algebra Geometry		Algebra 2		Example	
Prove and apply trigonometric identities								
Prove the Pythagorean identity $sin^2(\theta) + cos^2(\theta) = 1$ and use it to find $sin(\theta), cos(\theta)$, or $tan(\theta)$ given $sin(\theta), cos(\theta)$, or $tan(\theta)$ and the quadrant angle.	F-TF.8					CA		

Geometry

Strond	0000	Module	/Lesson in	Engage Ne	Evenale	
Strand	CCSS	Algebra	Geo	Geometry Algebra 2		Example
Congruence	G-CO					
Experiment with Transformations in the						
Plan						
Know precise definitions of angle, circle,	G-CO.1		CA	M1TA		
perpendicular line, parallel line, and line						
segment, based on the undefined notations						
of point, line, distance along a line, and						
distance around a circular arc.						
Represent transformations in the plan	G-C0.2		CA	M1TC		
using e.g., transparencies and geometry						
software; describe transformations as						
functions that take points in the plan as						
inputs and give other points as outputs.						
Compare transformations that preserve						
distance and able to those that do not.						

Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflection that carry it onto itself.	G-CO.3	CA M1TC	M5	
Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.	G-CO.4	CA	M1TC	
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.	G-CO.5	CA M1Tc	M5	
Understand Congruence in Terms of Ridged Motions.				
Use geometric descriptions of rigid motion to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	G-CO.6	CA	M1TC	
Use definition of congruence in terms of rigid motions to show that two triangles are congruent if and on if corresponding pairs of sides and corresponding pairs of angles are congruent.	G-CO.7	CA M1TC	M1TD	
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	G-CO.8	CA	M1TD	
Prove Geometric Theorems				
Prove theorems about lines and angles.	G-CO.9	CA M1TB M1Tb	M5	
Prove theorems about triangles.	G-CO.10	CA M1TE	M5	
Prove theorems about parallelograms	G-CO.11	CA M1TE	M5	

Make Geometric Constructions					
Make formal geometric constructions with	G-CO.12		CA	M5	
a variety of tools and methods.			M1TA		
			M1TC		
Construct and equilateral triangle, a	G-CO.13		СА	M1TF	
square, and a regular hexagon inscribed in			M1TA		
a circle.					

Strend	0000	Мо	dule/Les	sson in E	ngage Ne	Evenale		
Strand	LLSS	Algeb	ora	Geor	netry	Algeb	ra 2	Example
Similarity, Right Triangles, and	G-SRT							
Trigonometry.								
Understand similarity in terms of								
similarity transformations								
Verify experimentally the properties of	G-SRT.1.a			CA	M2TB			
dilations given by a center and a scale	G-SRT.1.B			M2TA				
factor.								
Given two figures, use the definition of	G-SRT.2			CA	M2TC			
similarity transformations to decide if they								
are similar; explain using similarity								
transformations the meaning of similarity								
for triangles as the equality of all								
corresponding pairs of angles and the								
proportionality of all corresponding pairs of								
sides.								
Use the properties of similarity	G-SRT.3			CA	M2TC			
transformations to establish the Angle-								
Angle (AA) criterion for two triangles to be								
similar.								
Prove theorems involving similarity.								
Prove theorems about triangles. Theorems	G-SRT.4			CA	M2TB			
include: a line parallel to one side of a				M2TA	M2TD			
triangle divides the other two								
proportionally, and conversely; the								
Pythagorean Theorem proved using								
triangle similarity.								

Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	G-SRT.5		CA	M2TC		
Define Trigonometric ratios and solve problems involving right triangles.						
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.	G-SRT.6		CA	M2TE		
Explain and use the relationship between the sine and cosine of complementary angles.	G-SRT.7		CA	M2TE		
Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.	G-SRT.8		CA	M2TE		
Derive and use the trigonometric rations for special right triangles.	G-SRT.8.1 (CA)		CA			
Apply trigonometry to general triangles.						
Derive the formula A=1/2ab sin(C) for the area of a triangle by drawing an auxiliary line from the vertex perpendicular to the opposite side.	G-SRT.9(+)(CA)		CA			
Prove the Law of Sines and Cosines and use them to solve problems.	G- SRT.10(+)(CA)		CA			
Understand the Law of Sines and Law of Cosines to find unknown measurements in right and non-right triangles.	G- SRT.11(+)(CA)		CA			

Strend	C CCC	Module/I	esson in Engage N	Evennle	
Strand	CLSS	Algebra	Geometry	Algebra 2	Example
Circles	G-C				
Understand and apply theorems about					
circles					
Prove circles are similar.	G-C.1		CA M5TB		
Identify and describe relationships among inscribed angles, radii, and chords. Include relationships between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.	G-C.2		CA M5TA M5TB M5TC		
Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.	G-C.3		CA M5TA M5TC		
Construct a tangent line from a point outside a given circle to the circle.	G-C.4(+)				
Find arc lengths and areas of sectors of circles.					
Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for are of a sector. Convert between radians and degrees.	G-C.5		CA M5TB		

Strend	2222	Module/Lesson in Engage New York					Evennle	
Strand	CLSS	Alge	ebra	Geor	netry	Algel	ora 2	Example
Expressing Geometric Properties with Equations	G-GPE							
Translate between the geometric description and the equation for conic section.								
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle.	G-GPE.1			CA	M5TD		M1	
Derive the equation of a parabola given a focus and directrix.	G-GPE.2			СА		M1TC		
Given a quadratic equation of the form ax^2 + by^2 + cx + dy + e = 0, use the method for completing the square to put the equation into standard form; identify where the graph of the equation is a circle, ellipse, parabola, or hyperbola and graph the equation. (circles an parabolas only)	G-GPE.3.1 CA standard					CA		
Use Coordinates to Prove Simple Geometric Theorems Algebraically								
Use coordinates to prove simple geometric theorems algebraically.	G-GPE.4			CA M4TB	M4TD M5TD			
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems.	G-GPE.5			CA	M4TB			
Find the point on a directed line segment between two given points that partitions the segment in a given rations.	G-GPE.6			CA	M4TD			
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles.	G-GPE.7			CA M4TA	M4TC			

Cture and	0000	Module/Lesson in Engage New York					Fuermale	
Strand	CLSS	Alge	bra	Geor	netry	Algebra 2		Example
Geometric Measurement and Dimension	G-GMD							
Explain volume formulas and use them to								
solve problems.								
Give an informal argument for the formulas	G-GMD.1			CA	МЗТВ			
for the circumference of a circle, area of a				МЗТА				
circle, volume of a cylinder, pyramid, and								
cone.								
Use volume formulas for cylinders,	G-GMD.3			CA	МЗТВ			
pyramids, cones, and spheres to solve				M2TA				
problems.			_					
Visualize relationships between two-								
dimensional and three-dimensional								
objects.				-	-	-		
Identify the shapes of two-dimensional	G-GMD.4			CA	МЗТВ			
cross-sections of three-dimensional								
objects, and identify three-dimensional								
objects generated by rotations of two-								
dimensional objects.								
Know that the effect of a scale factor K	G-GMD.5(CA)			CA				
greater than zero on length, area, and								
volume is to multiply each by K, K ² , and K ³								
and volume measures using scale factors								
Vorify experimentally that in a triangle				<u> </u>				
angles opposite longer sides are larger	G-GIVID.0(CA)			CA				
sides opposite larger angles are longer, and								
the sum if any two side lengths is greater								
than the remaining side length: apply these								
relationships to solve real-world and								
mathematical problems.								

Strend	0005	Module/Lesson in Engage New York						Fuerente
Strand	CLSS	Algebra		Geometry		Algebra 2		Example
Modeling with Geometry.	G-MG							
Apply geometric concepts in modeling situations.								
Use geometric shapes, their measurements, and their properties to describe objects.	G-MG.1			CA M2TC M3TB	M4			
and volume in modeling situations.	G-MG.2			CA M3TB				
Apply geometric methods to solve design problems.	G-MG.3			CA M3TB (mod 2???)	M4			

Statistics and Probability

Strond	CC55		Module	e/Lesson i	Evennele			
Strand	CLSS	Algebra		Geometry		Algebra 2		Example
Interpreting Categorical and Quantitative	S-ID	Taught	Assumed	Taught	Taught Assumed		Assumed	
Data			Mastery		Mastery		Mastery	
Summarize, represent, and interpret data								
on a single count or measurement variable								
Represent data with plots on the real	S-ID.1	CA				CA		
number line (dot plots, histograms, and box		M2TA						
plots)		M2TB						
Use statistics appropriate to the shape of	S-ID.2	СА						
the data distribution to compare center and		M2TA						
spread of two or more different data sets.		M2TB						
Interpret differences in shape, center, and	S-ID.3	СА						
spread in the context of the data sets,		M2TA						

accounting for possible effects of extreme data points.		M2TB			
Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate pollution percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	S-ID.4			CA	
Interpret expressions for functions in terms of the situation they model.					
Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data. Recognize possible associations and trends in the data.	S-ID.5	CA M2TC			
Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	S-ID.6	CA M2TD			
Fit the function to the data; use functions fitted to data to solve problems in the contest of the date. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic and exponential models.	S-ID.6.A	CA M2TD			
Informally assess the fit of a function by plotting and analyzing residuals.	S-ID.6.B	CA M2TD			
Fit a linear function for a scatter plot that suggests a linear association	S-ID.6.C	CA M2TD			
Interpret linear models					F
Interpret the slope and intercept of a linear model in the context of the data.	S-ID.7	CA M2TD			
Compute (using technology) and interpret	S-ID.8	СА M2TD			
Distinguish between correlation and causation.	S-ID.9	CA M2TC M2TD			

Strend	0000	Module/L	esson in Engage	Evenuela	
Strand	CLSS	Algebra	Geometry	Algebra 2	Example
Making inferences and justifying conclusions	S-IC				
Understand and evaluate random processes underlying statistical experiments.					
Understand statistics as a process for making inferences about population parameters based on a random sample form that pollution.	S-IC.1			СА	
Decide if a specified model is consistent with results from a given data-generating process.	S.IC.2			CA	
Make inferences and justify conclusion from sample surveys, experiments, and observational studies.					
Recognize the purpose of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each	S-IC.3			CA	
Use data from a sample survey to estimate population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	S-IC.4			CA	
Use data from randomized experiment to compare two treatments; use simulation to decide if differences between parameters are significant.	S.IC.5			CA	
Evaluate reports based on data.	S-IC.6			СА	

Strend	0000	Module/L	esson in Engage N	Fromalo	
Strand	LLSS	Algebra	Geometry	Algebra 2	Example
Conditional Probability and the Rules of Probability.	S-CP				
Understand Independence and Conditional Probability and use them to Interpret Data.					
Describe events as subsets of a sample space using characteristics of the outcomes, or as unions, intersections, or complements of other events.	S-CP.1		CA		
Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use characterization to determine if they are independent.	S-CP.2		CA		
Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is that same as the probability of A.	S-CP.3		CA		
Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way frequency table as a sample space to decide if events are independent and to approximate conditional probabilities.	S-CP.4		CA		
Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.	S-CP.5		CA		
Use the Rules of Probability to Compute the Probabilities of Compound Events in a Uniform Probability Model.					

Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model.	S-CP.6	CA		
Apply the addition rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model.	S-CP.7	CA		
Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P($B A$)= P(B)P($A B$), and interpret the answer in terms of the model.	S-CP.8(+)	CA		
Use permutations and combinations to compute the probabilities of compound events and solve problems	S-CP.9(+)	CA		

Strond	2222	М	odule/Le	sson in E	ngage No	Example		
Strand	CCSS	Alge	Algebra		Geometry		bra 2	
Using probability to make decision	S.MD							
Use probabilities to make fair decisions	S.MD.6(+)			CA				
Analyze decisions and strategies using	S.MD.7(+)			CA				
probability concepts.								

Algebra

Mastery of the following standards are assumed for Algebra Module 1

6.NS.7	Understand ordering and absolute value of rational numbers.
	a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram.
	b. Write. Interpret, and explain statements of order for rational numbers in real-world context.
6.EE.3	Apply the properties of operations to generate equivalent expressions.
6 55 4	Identify when two expression are equivalent
0.22.4	
6.EE.5	Understand solving an equation or inequality as a process of answering questions: which value from a specified step, if any make the equation
6.EE.6	Use variables to represent numbers and write expression when solving a real-world or mathematical problem; understand that a variable can
	represent an unknown number, or depending on the purpose at hand any number in a specific set.
6.EE.7	Solve real-world and mathematical problems by writing and solving equations of the form x + p and px = q for cases in which p,q and x are all nonnegative rational numbers.
6.EE.8	Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. Recognize that
	inequalities of the form x > c and x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams.
7.EE.1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expression with rational coefficients.
7.EE.2	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are real.
7.EE.3	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions
	and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess reasonable of answers using mental computation and estimation strategies.
7.EE.4	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve
	problems by reasoning about the quantities.
	a. Solve word problems leading to equations of the for $px + q = r$ and $p(x + q) = r$, where p, q, and r are specific rational numbers. Solve
	equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.
	b. Solve word problems leading to inequalities to the form $px + q > r$ or $px + q < r$, where p, q, and r are specific rational numbers. Graph
	the solution set of the inequality and interpret it in context of the problem.
8.EE.1	Know and apply the properties of integer exponents to generate equivalent numerical expressions.

8.EE.2	Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number.								
	Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.								
8.EE.7	Solve linear equations in one variable.								
	a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or now solutions. Show which of these								
	possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a,								
	a = a, or a = b results.								
	b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the								
	distributive property and collecting like terms.								
8.EE.8	Analyze and solve pairs of simultaneous linear equations.								
	a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs,								
	because points of intersection satisfy both equations simultaneously.								
	b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple								
	cases by inspection.								
	c. Solve real-world and mathematical problems leading to two linear equations in two variables.								

Mastery of the following standards are assumed for Algebra Module 2

6.SP.1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers.
6.SP.2	Understand that a set of data collected to answer a statistical question has distribution which can be described by its center, spread, and overall shape.
6.SP.3	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
6. SP.4	Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
6.SP.5	 Summarize numerical data sets in relation to their context such as by: a. Reporting the number of observation b. Describing the nature of the attribute under investigation, including how it was measure and its units of measurement. c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.
8.SP.1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
8.SP.2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggests a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
8.SP.3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.

8.SP.4	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a tow-
	way table. Construct and interpret subjects. Use relative frequencies calculated for rows or columns to describe possible association between
	the two variables.

Mastery of the following standards are assumed for Algebra Module 3

8.EE.1	Know and apply the properties of integer exponents to generate equivalent numerical expressions.
8.EE.2	Use square root and cube root symbols to represent solutions to equations in the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number.
	Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.
8.F.1	Understand that a function is a rule that assign to each input exactly one output. The graph of a function is the set of ordered pairs consisting of
	an input and the corresponding output.
8.F.2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal
	descriptions).
8.F.3	Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of function that ore not linear.
8.B.4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a
	description of a relations or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial
	value of a linear function in terms of the situation it models, and in terms of its graph or table values.
8.F.5	Describe qualitatively the functional relationship between two quantities by analyzing a graph. Sketch a graph that exhibits the qualitative
	features of a function that has been described verbally.

Mastery of the following standards are assumed for Algebra Module 4

8.NS.1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational
	numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
8.EE.1	Know and apply the properties of integer exponents to generate equivalent numerical expressions.

Mastery of the following standards are assumed for Algebra Module 5

8.F.4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a
	description of a relations or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial
	value of a linear function in terms of the situation it models, and in terms of its graph or table values.
8.F.5	Describe qualitatively the functional relationship between two quantities by analyzing a graph. Sketch a graph that exhibits the qualitative
	features of a function that has been described verbally.

Mastery of the following standards are assumed for geometry Module 1

8.G.1	
8.G.2	
8.G.3	
8.G.5	

Mastery of the following standards are assumed for geometry Module 2

7G.1	
8.G.3	
8.G.5	

Mastery of the following standards are assumed for geometry Module 3

7.G.3	
7.G.4	
8.G.7	
8.G.9	

Mastery of the following standards are assumed for geometry Module 5

8.G.7	
8.G.8	