Intelligence and Cognitive Functioning
Chapter 13

The Nature of Intelligence
The Biological Origins of Intelligence
Deficiencies and Disorders of Intelligence
The Nature of Intelligence

Figure 13.2: Distribution of IQ Scores in the Population

- Intelligence: ability to reason, understand, profit from experience.
- Intelligence quotient (IQ)
 - 100 average. *Original tests were designed for children.
 - *High Positive correlation to school performance, and lower (but still positive) correlation to job performance, income, socioeconomic level
- Negatively correlated to Juvenile delinquency
- Note that only a VERY small proportion of the population tests outside of the ‘normal’ range. *Only 2% above 130 or below 70.
The Nature of Intelligence

• The Structure of Intelligence
 • Tests help define what we mean, however they have issues: Hard to make one that is ‘culture free’ and that doesn’t rely on verbal skills / abilities (like the *Raven Progressive Matrices, which is a more accurate measure of ‘pure’ intelligence’).
 • Debate whether intelligence is a single capability or a collection of abilities
 • Lumpers- single ability (Spearman’s ‘g’ factor)
 • *Splitters- collection of abilities, unrelated to each other
 • *Most tests can’t or don’t measure things like ‘street smarts’.
• The Brain and Intelligence
 • Einstein
 • Slightly smaller brain, but relatively larger parietal lobes, that also had more glia in *left parietal- an area related to mathematical ability and spatial reasoning.
 • Active, distributed network is present in “intelligent” individuals
• Brain Size *(we have a large brain to body ratio)*

• General intelligence correlates with:
 • Gray matter volume (particularly frontal areas)
 • Brain organization- thicker cortex, smaller columns
The Biological Origins of Intelligence

Figure 13.5: Areas Where Cortical Thickness Is Associated With Intelligence.
The Biological Origins of Intelligence

Figure 13.6: Relationship Between IQ Scores and Nerve Conduction Velocity

- IQ scores correlated with processing efficiency
 - Higher myelination
 - Increased nerve conduction and processing speed
 - Reduces “cross talk” to adjacent areas
The Biological Origins of Intelligence

Figure 13.7: Greater Efficiency in the More Intelligent Brain

- *Women’s smaller brains are more efficient
- IQ scores correlated with processing efficiency
 - Higher myelination
 - *Increased nerve conduction velocity and processing speed
 - reduces “cross talk” to adjacent areas
 - *Reduced energy (glucose) use (b)
The Biological Origins of Intelligence

Figure 13.8: Brain Locations Involved in Mathematical Performance

- Specific abilities and the brain
 - Linguistic:
 - *left frontal, temporal lobes
 - Logical-mathematical
 - Left prefrontal cortex (rote calculation)
 - Parietal cortices (active calculation).
 - *Mirror neurons: unique to humans & primates
 - Spatial
 - Right parietal structures.
The Biological Origins of Intelligence

Figure 13.9: Correlations of IQ Scores Among Relatives

• Heredity and Environment
 • Heredity at 41%, and increases with age
 • Genes: ASPM (brain size), PACAP (neurogenesis)
 • Identical twins reared apart more similar than fraternal twins raised together
The Biological Origins of Intelligence

• The Genetic Controversy
 • Whether ethnic differences in intelligence are genetic (hereditarian perspective)
 • Evidence for:
 • Identical twins raised apart have more similar IQ scores than adopted environments (i.e., Fig 13.9)
 • Evidence against:
 • Socioeconomic status a stronger factor than ethnicity
 • APA task force found no direct evidence of IQ differences between African Americans and Caucasian Americans
The Biological Origins of Intelligence

Figure 13.11: Worldwide Relationship Between Intelligence and Infectious Disease

- Environmental effects
 - Socioeconomic level and parental education (genetic confounds)
 - Environmental interventions
 - Head Start (temporary), *Abecedarian Project (earlier in life, more permanent)
 - Level of infectious disease best predictor of global differences
The Biological Origins of Intelligence
Application: Enhancing Intelligence and Performance

• Nature poll: 20% of respondents had used drugs to enhance concentration or memory.
• “Smart drugs” in use now include:
 • Modafinil and methylphenidate for alertness, learning
 • Dopamine agonists (d-amphetamine) for working memory
• Electrical stimulation of prefrontal cortex, and working memory training tasks also improve performance.
Deficiencies & Disorders of Intelligence

Figure 13.12: Compensatory Brain Activity in High-Performing Older Adults

• Effects of Aging on Intelligence
 • Perceptual speed drops after 25
 • Numeric memory at 60.
 • **Default mode network** is responsible for preparedness for action
 • Encompasses portions of the parietal, frontal and temporal lobes
 • Nonphysical causes
 • Lack of skill practice, low self esteem, poor diet
 • Sex hormones can provide protection against the cognitive effects of aging
 • Testosterone replacement in males improves spatial memory, and if we use dihydrotestosterone we can also get working & verbal memory improvements.
Deficiencies & Disorders of Intelligence

• **Intellectual disability** is a limitation in intellectual functioning and in adaptive behavior originating before the age of 18.

 • The criteria for intellectual disability are an IQ below 70 and difficulty meeting routine needs like self-care. Most cases fall in the ‘mild’ range, and *they can live independently.

 • This definition and the categories of disability are arbitrary and likely to change in the future.

 • Most cases of disability are due to a combination of genetic and environmental causes.

 • Environmental causes include disease during infancy, *low* socioeconomic status, prenatal exposure to viruses, and *maternal alcoholism.
Deficiencies & Disorders of Intelligence

Table 13.1: Categories of Intellectual Disability

<table>
<thead>
<tr>
<th>Category</th>
<th>IQ</th>
<th>Percentage</th>
<th>Adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>50–70</td>
<td>85</td>
<td>Educable to sixth-grade level; may be self-supporting as adult, with assistance.</td>
</tr>
<tr>
<td>Moderate</td>
<td>35–49</td>
<td>10</td>
<td>May achieve education to second-grade level, live outside institution with family, and contribute to support.</td>
</tr>
<tr>
<td>Severe</td>
<td>20–34</td>
<td>4</td>
<td>Verbal communication and ability to profit from vocational training are limited.</td>
</tr>
<tr>
<td>Profound</td>
<td>Below 20</td>
<td>1</td>
<td>Little or no speech. Requires constant care and supervision.</td>
</tr>
</tbody>
</table>
• **Down syndrome** (Extra 21st chromosome)
 • *Leading genetic cause of intellectual disability.*
 • Glia secrete less of two proteins that support neuron survival.
 • Increasing proteins in women with Down syndrome fetus might be an effective treatment.
Deficiencies and Disorders of Intelligence

- **Fragile X syndrome**
 - Mutated FMR1 gene, role in pruning excess synapses.
 - More likely in males, milder in females.

- **PKU (Phenylketonuria)**
 - Lacks enzyme that breaks down phenylalanine (amino acid).
 - Avoidance of high phenylalanine foods prevents intellectual impairment.

- **Hydrocephalus**
 - Fluid buildup in ventricles, reducing brain tissue amount.
 - Treated by using a shunt to drain excess fluid.
 - 50% of hydrocephalics with 5% brain capacity have IQs over 100.
Deficiencies & Disorders of Intelligence

- **Autism Spectrum Disorders (ASD)**
 - *Social deficits, communication difficulties and repetitive behaviors*
 - Impaired communication, imagination and socialization
 - Lack a **theory of mind** (infer another’s thoughts based on experience)
 - *Lack of Empathy may be due to deficient mirror neurons*
Deficiencies & Disorders of Intelligence

Figure 13.16: Savant-Like Ability Following Brain Impairment

• **Autistic Savants** and High-Functioning individuals with ASD
 • Savant: 1+ exceptional skills but overall low functioning
 • High-functioning: impairment overcome with effort (Temple Grandin)
 • Skill source perhaps due to compromised executive or integrative function
Deficiencies and Disorders of Intelligence

- Brain anomalies
 - Disorder of brain development
 - Brain stem, Cerebellum, Temporal lobes
 - Lack of amygdala and ventromedial prefrontal cortex (vmPFC) coordination
 - Avoidance of looking at faces
 - Problems tracking objects
 - Decreased mirror neuron activity due to reduced activity in the dorsal stream inputs to frontal and motor cortices.
 - Decreased white matter
 - Loss of synchronized activity
Deficiencies & Disorders of Intelligence

Figure 13.19: Reduced Response to Betrayal of Trust Following Oxytocin.

- Biochemical Anomalies
 - Abnormal levels of serotonin, glutamate, GABA, and oxytocin
 - *Low oxytocin and serotonin levels appear to be associated with impairments in sociability
Deficiencies & Disorders of Intelligence
APPLICATION: Childhood Vaccines and Autism

- Environment and ASD
 - Traffic pollution can disrupt brain development
 - Reduces energy to developing brain
 - Maternal metabolic conditions
 - Obesity, diabetes, and hypertension linked to ASD
 - Folic acid supplements reduce risks.
 - Childhood vaccines have NO link to ASD
Deficiencies & Disorders of Intelligence

• Heredity
 • Siblings of ASD children 25 times more likely to develop the disorder
 • *Concordance rates over 90% if we include social and behavioral disorders along with Autism
 • ASD genes expressed in superficial cortex, interfering with connections
 • Absence of genes in frontal and temporal cortices of ASD individuals indicate a possible epigenetic influence.
 • ASD twice as common in boys
Deficiencies & Disorders of Intelligence

- **Attention deficit hyperactivity disorder (ADHD)**
 - Characterized by
 - Impulsiveness
 - inability to sustain attention
 - learning difficulty
 - hyperactivity.
 - Neurotransmitter Anomalies
 - Reduced dopamine pathway activity (impaired reward)
 - Ritalin (stimulant)
 - Increases norepinephrine output to the prefrontal cortex
 - Improves impulse control, working memory, and learning
Deficiencies & Disorders of Intelligence

Figure 13.21: The ADHD Brain

- **Attention deficit hyperactivity disorder (ADHD)**
 - Brain anomalies
 - Reduced Prefrontal cortex, Cerebellum, and Right caudate nucleus of the striatum
 - Disruption of attention-inhibition network of temporal, inferior parietal
Deficiencies & Disorders of Intelligence

• **Attention deficit hyperactivity disorder (ADHD)**

 • Heredity

 • *5-6 times more prevalent in relatives than non-relatives

 • Concordance: 79% in identical twins, 32% in fraternal twins.

 • Genes involved in

 • Dopamine, norepinephrine, and serotonin transmission

 • Synaptic functioning

 • Neural development and survival

 • Learning
Deficiencies & Disorders of Intelligence

Figure 13.20: Relative Odds of Avoiding Substance Abuse Disorder in Individuals Receiving Stimulant Treatment for ADHD as Children, Compared to Those Not Receiving Stimulant Treatment.

- The Environment and ADHD
 - ADHD incidence increased by
 - Stress, smoking, drug abuse during pregnancy
 - Brain injury, stroke, and pregnancy/birth complications
 - Lead and pesticide exposure
 - Early ADHD drug treatment might prevent later substance abuse