
Sleep and Consciousness

Sleep and Dreaming

The Neural Basis of Consciousness

- Consciousness is tough to study... but sleep is
 - *readily observable, consists of different levels of consciousness, and can be studied scientifically
- The purpose of sleep is unclear.
 - *Restorative Hypothesis: busier we are, more sleep we need
 - Species with higher metabolic rates typically spend more time in sleep
 - CSF circulates during sleep to remove toxins
 - Adaptive Hypothesis
 - The amount of sleep depends on the availability of food and on safety considerations.
 - Vulnerable animals without shelter (cattle) and those that need to spend hours feeding (elephants) sleep very little.

Figure 15.1: Time Spent in Daily Sleep for Different Animals

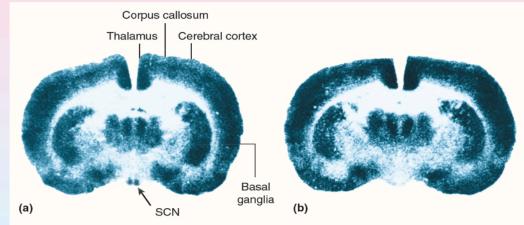
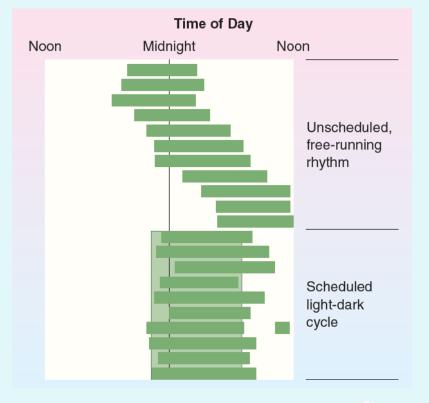
SOURCE: Based on data from "Animal Sleep: A Review of Sleep Duration Across Phylogeny, by S. S. Campbell and I. Tobler, 1984, *Neuroscience and Biobehavioral Reviews*, *8*, 269–300.

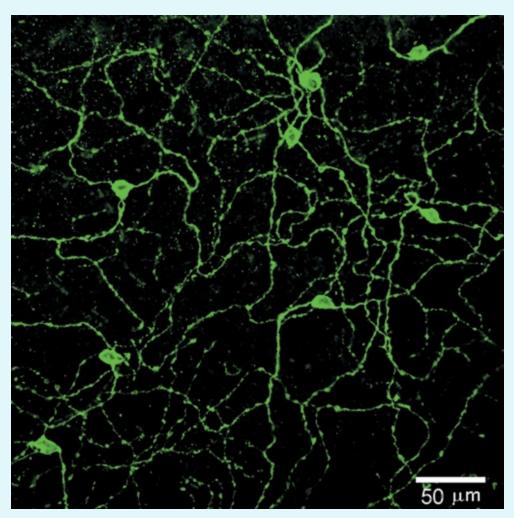
Garrett: Brain & Behavior 4e

Sleep and Dreaming

Figure 15.2: The Suprachiasmatic Nucleus.

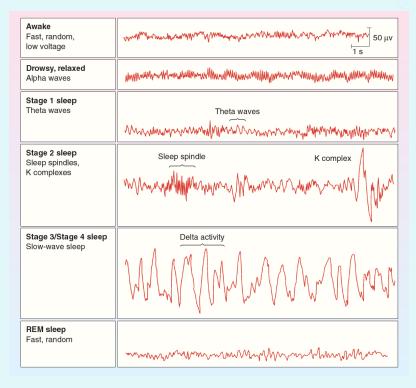
- Circadian rhythms
 - *Many industrial accidents occur between midnight & 4:00 a.m.
 - *Suprachiasmatic nucleus (SCN) is the main "clock"
 - Zeitgebers: environmental light based stimuli that regulate sleep/wake cycle *via the retinohypothalamic pathway
 - Melatonin, a sleep-inducing hormone released by pineal gland is *suppressed by light.
 - *Without light, our circadian rhythm tends to increase to 25 hours

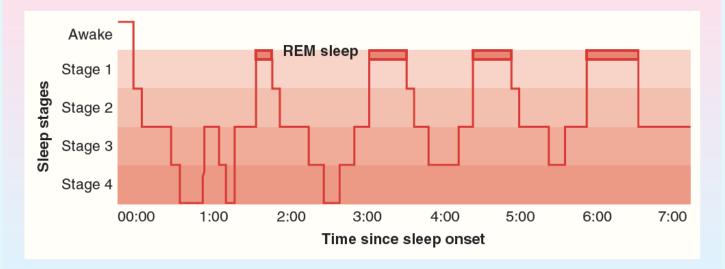

Figure 15.3: Sleep and Wake Periods During Isolation From Time Cues

- Rhythms During Waking and Sleeping
 - Ultradian rhythms are cycles that are shorter than a day
 - The basic rest and activity cycle is *90-100 minutes long
 - *The 'after lunch' siesta or break coincides with a natural ultradian rhythm rest period.

SOURCE: From Introduction to Psychology, Gateways to Mind and Behavior (with InfoTrac) 9th edition, by Coon, 2001. Reprinted with permission of Wadsworth, a division of Thomson Learning.

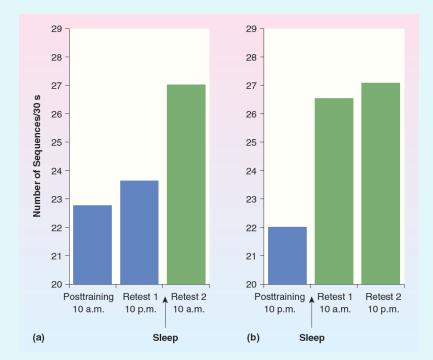

Sleep and Dreaming Figure 15.4: *Retinal Ganglion Cells Containing *Melanopsin.

SOURCE: From "Melanopsin-containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity," by Hattar, Liao, Takao, Berson, and Yau, *Science, 295*, 1065–1070. © 2002 American Association for the Advancement of Science (AAAS). Reprinted with permission from AAAS.


Figure 15.5: Electroencephalogram and the Stages of Sleep

- Electroencephalogram (EEG) measurement
 - Awake: *Beta waves (alertness) and Alpha waves (relaxation)
 - Stage 1: *Theta waves
 - Stage 2: *Sleep spindles and K complexes
 - Stages 3 and 4 are slow wave sleep with delta waves

Figure 15.6: Time Spent in Various Sleep Stages During the Night


- The sleeper returns through the stages in reverse order, and then heads into REM sleep for the first time
 - Thereafter the percentage of SWS declines with each subsequent cycle
 - *Cycling through each series of stages takes about 90 minutes.

8

Figure 15.7: Improvement in Learning Following Sleep.

- Functions of REM and Non-REM Sleep
 - REM Sleep
 - Activation-Synthesis Hypothesis
 - During REM sleep, forebrain integrates brainstem neural activity with information stored in memory
 - *REM sleep promotes childhood neural development
 - *REM also promotes maturation of higher brain centers
 - *REM also provides opportunities for memory consolidation

10

Garrett: Brain & Behavior 4e

Sleep and Dreaming

- Functions of REM and Non-REM Sleep
 - Non-REM Sleep
 - Slow wave sleep responds to temperature
 - *Slow wave sleep may promote cerebral recovery

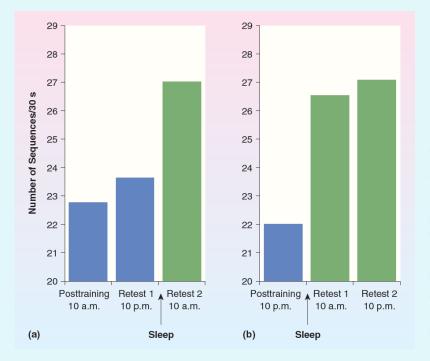
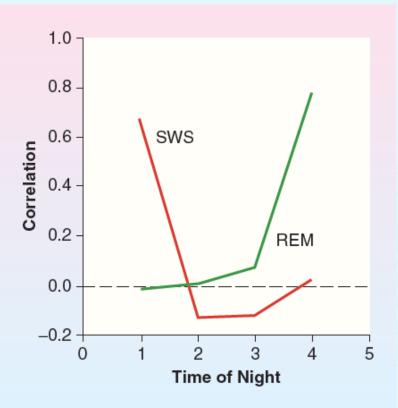
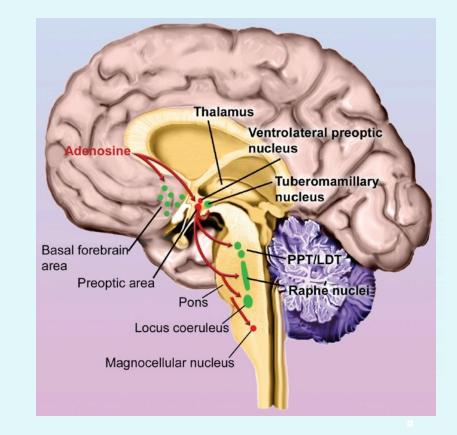



Figure 15.8: Correlation of Slow-Wave and REM Sleep With Overnight Task Improvement.


- Sleep and Memory
 - *REM sleep promotes memory via theta rhythms in the hippocampus
 - *Both REM and slow wave sleep are needed for consolidation
 - *The reverse learning hypothesis states that memories are purged during REM sleep.

SOURCE: Adapted with permission from Stickgold et al., "Sleep, Learning, and Dreams: Off-line Memory Reprocessing," *Science*, 294, 1052–1057. © 2001 American Association for the Advancement of Science. Reprinted with permission from AAAS.

Figure 15.9: Brain Mechanisms of Sleep.

- Brain Structures of Sleep and Waking
 - Sleep Controls
 - Adenosine accumulates in basal forebrain area and preoptic area during wakefulness, ultimately induces drowsiness
 - Preoptic area and pons particularly important for sleep regulation

Figure 15.10: Arousal Structures of Sleep and Waking

- Basal forebrain area
 - Inhibits arousalproducing neurons, inducing drowsiness and reduces EEG.
- Waking and Arousal
 - *Major pathway 1: PPT/LDT

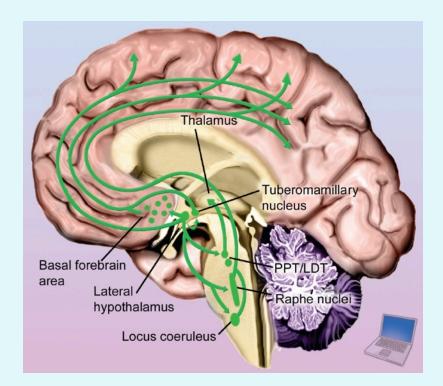


Figure 15.11: Firing Rates in Brain Stem Arousal Centers During Waking and Sleep

- Waking and Arousal
 - *The Ventromedial POA inhibits activity in Major Pathway 2: which includes the Tuberomammillary nucleus of the Hypothalamus, Locus coeruleus (NE) and raphé nucleus (S)
 - These areas are active while awake, quiet during non-REM, silent during REM.

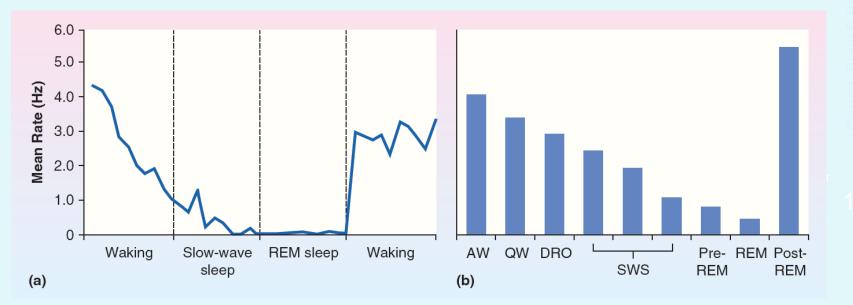
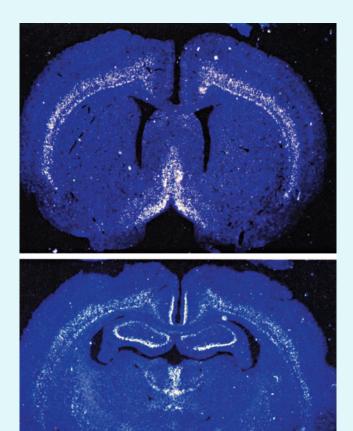
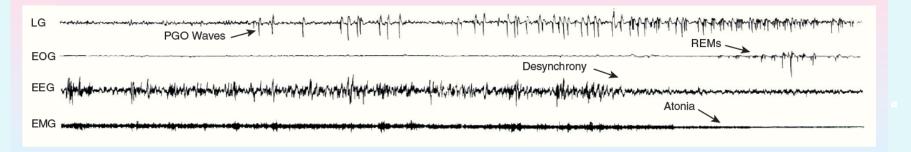
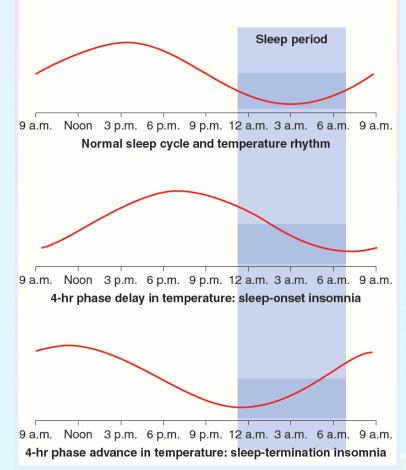



Figure 15.12: Locations of Orexin Receptors in the Rat Brain


- Waking and Arousal
 - Arousing pathway
 - Lateral hypothalamus releases orexin (hypocretin) to prevent the brain from switching into sleep.

SOURCE: From "Mice Lacking the M3 Muscarinic Acetylcholine Receptor Are Hypophagic and Lean," by Yamada et al., *Nature, 410,* 207–212, © 2001. Used with permission.

Figure 15.13: PGO Waves, EEG Desynchrony, and Muscle Atonia


- Waking and Arousal
 - Pons: the source of PGO waves
 - Excitation travels from pons through lateral geniculate to occipital area
 - PGO waves trigger EEG desynchrony of REM
 - *The pons sends impulses to the magnocellular nucleus in the medulla to produce REM atonia (paralysis)
 - Disordered atonia is seen in cataplexy, a form of narcolepsy

SOURCE: Copyright 1989 by the Society for Neuroscience.

Figure 15.14: Effects of Disrupted Circadian Rhythm on Sleep.

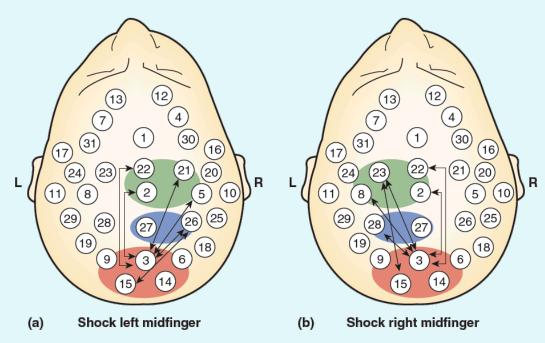
- Insomnia
 - Inability to sleep or obtain quality sleep
 - Can shorten the lifespan and may contribute to obesity
 - *Triggers include stress, depression and using sleeping pills. It is more common in people with mental health issues.
- Drugs used in treatment can be addictive
- Circadian phase delay or advance
 - Desynchrony between body temperature and sleep period

- Sleepwalking
 - Occurs during slow wave sleep
 - Can be triggered by stress, alcohol and sleep deprivation
 - Individual may engage in complex behavior while sleepwalking

REM Sleep Behavior Disorder

- Characterized by physical activity during REM sleep and can lead to injury
- Often associated with a neurological disorder or a tumor

Figure 15.15: Cataplexy in a Dog

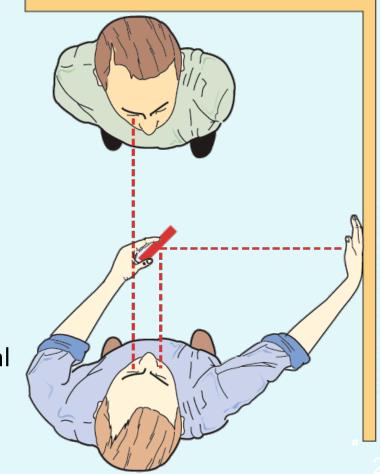

Narcolepsy

- *Fall into REM sleep suddenly during waking hours
- *Cataplexy (a symptom) is when person has sudden experience of atonia- full body paralysis while fully awake.
- 85% have mutation of HLA-DQ6 gen, which reduces orexin
- *Not unique to humans: some breeds of dogs are prone to it.

- Sleep as a Form of Consciousness
 - Lucid dreamers are aware of when they are dreaming and in some cases can control the nature of the dream
 - The gradations of sleep lead us to confront the question of what defines consciousness

Figure 15.17: Synchronized Activity Among Areas Involved in Learning.

- Awareness
 - Awareness of something specific is easier to study than pure awareness
 - Binding problem: how the brain combines information about an object
 - Synchronized 40-Hz activity between V1 and V5 in cats.

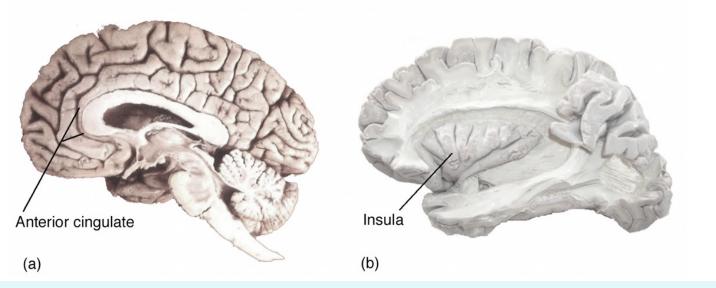


SOURCE: Adapted from "Coherence of Gamma-Band EEG Activity as a Basis for Associative Learning," by Miltner et al., *Nature 397,* 434–436. © 1999 Nature Publishing. Reprinted by permission.

Figure 15.18: Setup for Demonstrating the Cheshire Cat Effect

Attention

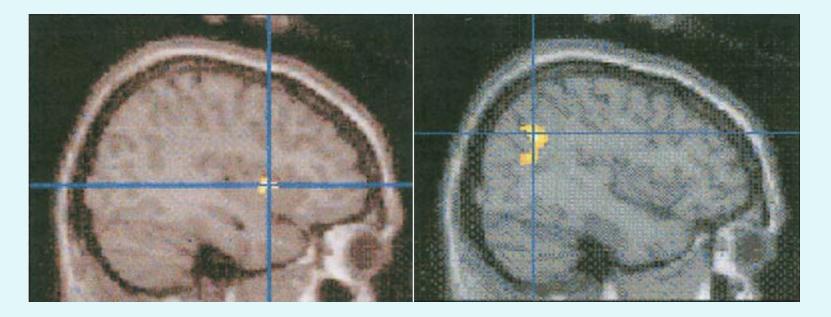
- How the brain allocates limited resources to focus on some inputs while excluding others.
- Cheshire cat effect: Binocular rivalry example
- Physiological process
 - Changes in attention matched with changes in neural activity
 - Thalamus is a critical region
 - *Dorsal Attention network allows us to direct our attention (toward a goal or object)
 - Also requires working memory and other brain areas



Sense of Self

- Self recognition, sense of agency
- *Body Image (my tongue, my hand, etc)
- *Mirror neurons for social 'understanding'
- *Memory
 - A sense of self would likely be severely impaired by the loss of long term, but not necessarily short-term, memory.
 - Confabulation suggests the importance of memory to self identity

Figure 15.20: (a) The Anterior Cingulate and (b) the Insula


- Sense of Self
 - Self recognition, sense of agency
 - Body image
 - Anterior cingulate and Insula involved in sense of body image

SOURCE: (a) Courtesy of Heal Collection, University of Utah. (b) Reproduced with the permission of the Museum of neuroanatomy Tomas A Mascitti; Institute of Cognitive Neurology (INECO)

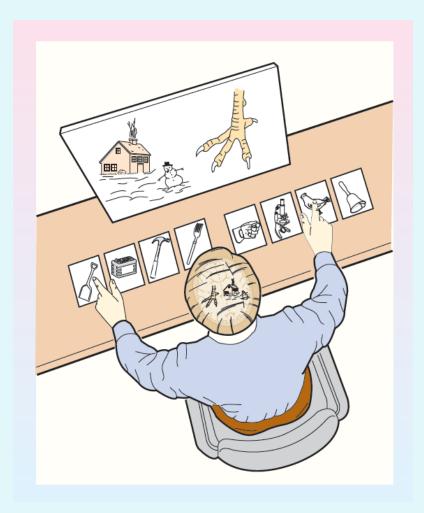
Figure 15.21: Brain Areas Involved in the Sense of Agency

- Sense of Self
 - Self recognition, sense of agency
 - Anterior cingulate and Insula involved in sense of body image

SOURCE: From "Experiencing Oneself Vs. Another Person as Being the Cause of an Action: The Neural Correlates of the Experience of Agency," by C. Farrer et al., *NeuroImage, 15,* 596–603, fig. 2 and fig. 3, p. 598. © 2002 with permission from Elsevier, Ltd.

Figure 15.23: Different Intentions Distinguished by Mirror Neurons

- Sense of Self
 - Self, Theory of Mind, and Mirror Neurons
 - Mirror neurons (Ch14) responsible or social understanding
 - Understanding intentions of others (figure below)



SOURCE: From "Grasping the Intentions of Others With One's Own Mirror Neuron System," by M. Iacoboni, 2005, *PLoS Biology, 3,* pp. 529–535, fig. 1 upper right and lower right, p. 530.

Figure 15.24: Split-Brain Patient Engaged in the Task Described in the Text.

Disorders of Self

- Split Brains
 - Surgical separation of the hemispheres
 Observe different aspects of consciousness
- Brain interpreter
 - Likely located in the left hemisphere
 - Integrates all cognitive processes

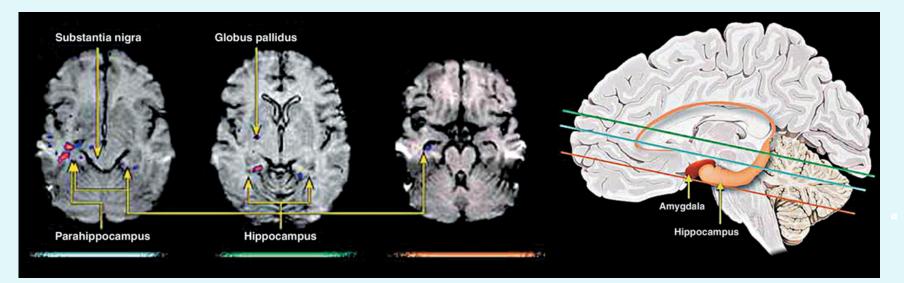
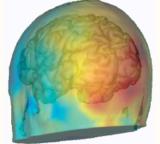
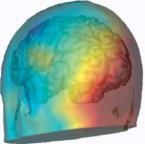

SOURCE: Gazzaniga (2002). Based on an illustration by John W. Karpelou, BioMedical Illustrations.

Figure 15.25: Chris Sizemore

- Dissociative Identity Disorder (DID)
 - (multiple personality disorder)
 - Shifts in consciousness and behavior suggesting distinct personalities
 - 'Alters' (distinct personalities) differ from one another in *skin conductance, cardiovascular measure, and EEG.
 - *90-95% report childhood abuse
 - May be a mechanism to cope with extreme stress

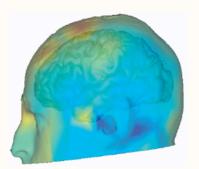
Figure 15.26: Hippocampal Activity During the Switch Between Multiple Personalities

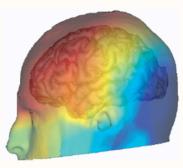

- Dissociative Identity Disorder (DID)
 - Increasing incidence raised questions of how many cases are "real"
 - Amnesia associated with DID may be state-dependent learning
 - MRI data suggest learning mechanisms may be involved



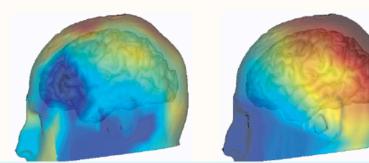
SOURCE: From "Functional Magnetic Resonance Imaging of Personality Switches in a Woman With Dissociative Identity Disorder," by Tsai et al., *Harvard Review of Psychiatry*, 7(15), pp. 119–122. © 1999. Reprinted by permission of Taylor & Francis.

Figure 15.27: Map of Event Related Potentials to Masked and Unmasked Visually Presented Words.


- Network Explanations
 - Theories require a widely distributed neuronal network
 - Theorized to be coordination of this network
 - Crick suggested claustrum is executive center or director of consciousness

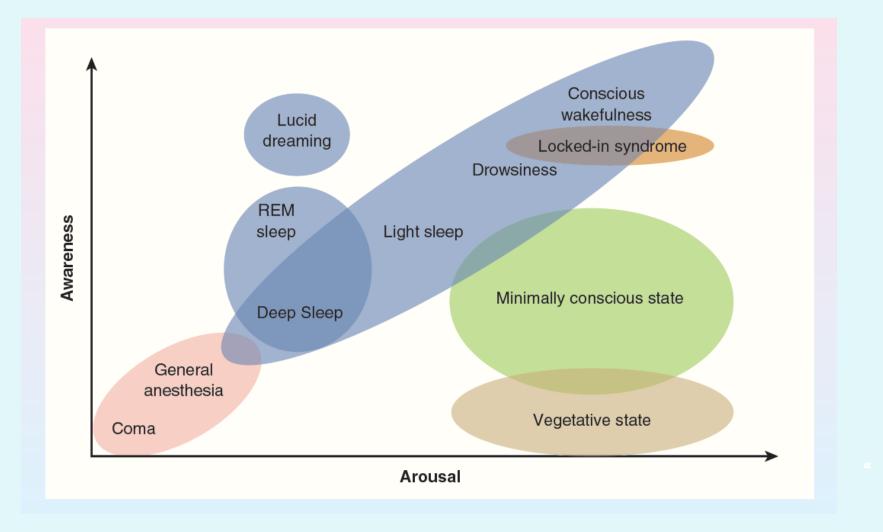


Time = 172 ms


Time = 156 ms

Time = 244 ms

Time = 244 ms


SOURCE: From "Cerebral Mechanisms of Word Masking and Unconscious Repetition Priming," by S. Dehaene et al., *Nature Neuroscience*, 4, 752–758, fig. 3, p. 755. © 2001 Macmillan Publishing. Used with permission.

IN THE NEWS: Consciousness and the Dying Brain

- Near Death Experiences
 - 3% have experienced this state
 - Out of body experience
- Brain mechanisms
 - Widespread, synchronized brain activity
 - Similar to aroused brain

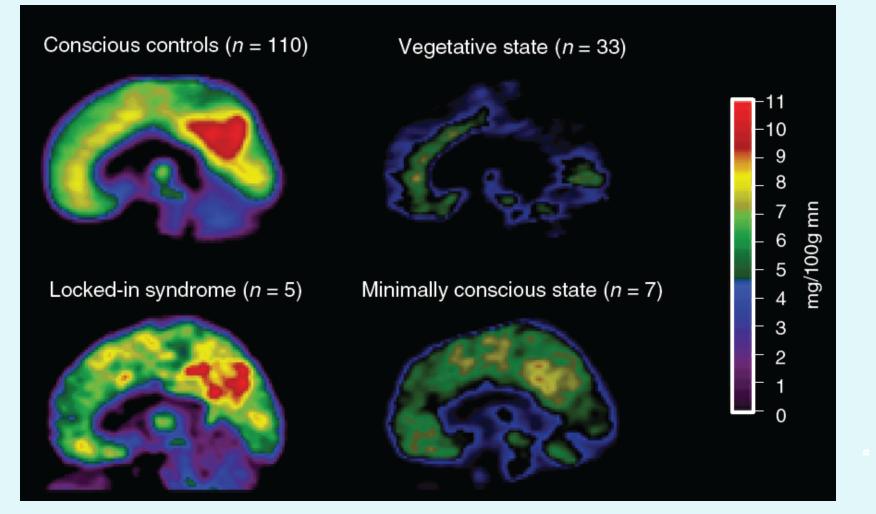


Figure 15.28: Awareness and Arousal in Normal and Impaired Consciousness.

SOURCE: Adapted from "The Neural Correlate of (Un)awareness: Lessons From the Vegetative State," by S. Laureys, 2005, *Trends in Cognitive Sciences*, 9, 556–559.

APPLICATION: Determining Consciousness When It Counts

SOURCE: From "Brain Function in Coma, Vegetative State, and Related Disorders," by S. Laureys, A. M. Owen, and N. D. Schiff, 2004, *Lancet Neurology, 3*, 537–546.