Motivation and the Regulation of Internal States
Chapter 6

Motivation and homeostasis
Hunger: a complex drive
Obesity
Anorexia, Bulimia, and Binge Eating Disorder
Motivation and Homeostasis

• **Motivation**
 • “To set in motion”
 • Factors that initiate, sustain, and direct behaviors.

• **Theoretical Approaches to Motivation**
 • **Instinct:**
 • Automatic and unlearned behavior
 • Occurs in all members of a species
 • **Drive theory:** The body maintains homeostasis—equilibrium—in its systems.
Motivation and Homeostasis

• Theoretical Approaches to Motivation
 • Drive theory: Is concerned primarily with explaining physical systems like hunger or thirst.
 • Incentive theory: People motivated by external stimuli
 • Arousal theory: People behave to satisfy a certain level of sensation

• Challenges to drive theory have driven emphasis on drives as states of the brain rather than conditions of tissues
 • Homeostatic Drive: A “control system” maintains conditions around a set point.
 • When conditions do not equal the set point, the organism will behave to return the drive to the set point.
Motivation and Homeostasis

Figure 6.2: Selected Nuclei of the Hypothalamus

- **Temperature Regulation**
 - **Ectotherms** cannot regulate body temperature internally using energy reserves...(Lizard / Snake)
 - **Endotherms** maintain a constant internal temp by changing metabolism, constricting/expanding blood vessels, or moving to warmer/cooler location [Mammal]
 - **Preoptic area** of the hypothalamus receives temperature signals from the blood/skin.

SOURCE: Adapted from Nieuwenhuys, Voogd, & Van Huijzen, 1988
Motivation and Homeostasis

Figure 6.3: Thirst Control Signals & Brain Centers

- Thirst
 - **Osmotic thirst**: when fluid in cells drop, cells take water from bloodstream
 - OVLT of hypothalamus signals **median preoptic nucleus** to trigger drinking
 - **Hypovolemic thirst**: when blood volume drops
 - Kidneys release renin, increasing **angiotensin II**.
 - Subfornical organ then signals **median preoptic nucleus**
Hunger: A Complex Drive
The Role of Taste.

- **Hunger**
 - Taste buds on tongue papillae detect five primary categories of chemicals.
 - **Sweet**: carbohydrates
 - **Salty**: ions for neural transmission
 - **Sour**: spoiled or rotten food
 - **Bitter**: toxic chemicals
 - **Umami**: protein content.
 - Some evidence that taste preference and sensitivity are developed early in life

- Signals travel to the **insula** (the primary gustatory cortex), and to the **nucleus of the solitary tract (NST)**.

- Rats with lesions in ventromedial hypothalamus eat uncontrollably and become very obese
Hunger: A Complex Drive
Sensory-Specific Satiety: Varying the Choices

• **Sensory-specific satiety**
 • Food is less appealing the more you eat, encouraging variation in choices
 • Area NST of the medulla.

• **Learned taste aversion**
 • Avoiding foods associated with illness or poor nutrition.

• **Learned taste preference**
 • Preference for the flavor of a food that contains a needed nutrient.
 • Wisdom of the body will have us naturally choosing a balanced diet, however...
 • Often counteracted by tasty, high-calorie foods
Hunger: A Complex Drive
Digestion & Two Phases of Metabolism. Figure 6.6: The Digestive System

- **Mouth**
 - Saliva starts breakdown of starches into **glucose**

- **Stomach**
 - **Hydrochloric acid** and **pepsin** mixes with food to digest proteins into **amino acids**.

- **Small Intestine**
 - **Duodenum** is where the rest of digestion takes place.
 - Fats transformed into **fatty acids** and **glycerol** by bile.

- **Hepatic portal vein** transports products to the liver
Hunger: A Complex Drive

Figure 6.7: Summary of the Absorptive and Fasting Phases

Requires capacity to store reserves, allocate them during fasting period, and monitor when reserves get low.

- **Absorptive Phase**
 - Glucose increases → Parasympathetic activation → Pancreas secretes insulin
 - Glucose enters body cells.
 - Glucose stored in liver and muscles as glycogen.
 - Fat stored in adipose cells as triglycerides.

- **Fasting Phase**
 - Glucose decreases → Sympathetic activation → Pancreas secretes glucagon
 - Glycogen transformed to glucose (for brain).
 - Stored fat released as:
 - fatty acids (for body), and
 - glycerol (for brain, after conversion to glucose).
Hunger: A Complex Drive

Figure 6.8: Hunger Control Signals and Brain Centers

- **Hunger from low**
 - Glucose *(Glucoprivic)*
 - Fatty Acids *(Lipoprivic)*
 - **Ghrelin** is released (excess may lead to stubborn obesity)

- **Nucleus of solitary tract (NST) of medulla**

- **Arcuate Nucleus**
 - Monitors nutrient levels
 - Releases NPY and AgRP which excite...

- **Paraventricular nucleus (PVN) and Lateral hypothalamus (LH)** trigger eating

Green pathways
Hunger: A Complex Drive

Figure 6.8: Hunger Control Signals and Brain Centers

- Stomach stretch receptors stimulated
- When food enters duodenum, intestines release
 - Cholecystokinin (CCK) inhibits NST and Lateral hypothalamus (LH)
 - Peptide YY$_{3-36}$ (PYY) inhibits arcuate nucleus & helps us conserve energy
- Eating slows
- Leptin (released by fat cells) inhibits hunger on a long-term basis
Hunger: A Complex Drive

Table 6.1: Summary of Feeding Signals

<table>
<thead>
<tr>
<th>Stimuli</th>
<th>Signal Source</th>
<th>Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start meals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Glucose, fatty acids</td>
<td>Liver, as nutrients in blood are depleted</td>
<td>Vagus nerve > NST > Arcuate nucleus</td>
</tr>
<tr>
<td>2. Glucose (brain)</td>
<td>Receptors near 4(^{th}) ventricle</td>
<td>Medulla to Arcuate nucleus</td>
</tr>
<tr>
<td>3. Ghrelin</td>
<td>Stomach, during fasting</td>
<td>Blood stream > Arcuate nucleus</td>
</tr>
<tr>
<td>End meals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Stomach volume</td>
<td>Stomach: stretch receptors</td>
<td>Vagus nerve > NST > Arcuate nucleus</td>
</tr>
<tr>
<td>5. CCK</td>
<td>Stomach, Intestines</td>
<td>Vagus > NST; Blood > brain</td>
</tr>
<tr>
<td>Long term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. PYY</td>
<td>Intestines</td>
<td>Blood > Arcuate nucleus; Inhibits NPY Neurons</td>
</tr>
<tr>
<td>7. Leptin</td>
<td>Fat cells</td>
<td></td>
</tr>
<tr>
<td>8. Insulin</td>
<td>Pancreas</td>
<td></td>
</tr>
</tbody>
</table>
Obesity

Figure 6.14: Body Mass Calculation Chart (for adults)

<table>
<thead>
<tr>
<th>Height in Feet and Inches</th>
<th>Weight in Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'0"</td>
<td>100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205</td>
</tr>
<tr>
<td>5'1"</td>
<td>20 21 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40</td>
</tr>
<tr>
<td>5'2"</td>
<td>19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 37</td>
</tr>
<tr>
<td>5'3"</td>
<td>18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 37</td>
</tr>
<tr>
<td>5'4"</td>
<td>17 18 19 20 21 22 23 24 26 27 27 28 29 30 31 32 33 33 33 34 35 36</td>
</tr>
<tr>
<td>5'5"</td>
<td>17 17 18 19 20 21 22 22 23 24 25 26 27 28 29 30 31 31 32 32 33 34</td>
</tr>
<tr>
<td>5'6"</td>
<td>16 17 18 19 20 21 22 23 23 24 25 26 27 27 28 29 30 31 31 32 32 33 33</td>
</tr>
<tr>
<td>5'7"</td>
<td>16 16 17 18 19 20 21 22 23 23 24 25 26 27 27 28 29 30 31 31 32 32 33 33</td>
</tr>
<tr>
<td>5'8"</td>
<td>15 16 17 18 19 20 21 21 22 23 23 24 24 25 26 27 27 28 29 30 30 31 31</td>
</tr>
<tr>
<td>5'9"</td>
<td>15 16 17 17 18 19 20 21 21 22 23 23 24 24 25 26 27 27 28 29 30 30 30</td>
</tr>
<tr>
<td>5'10"</td>
<td>14 15 16 17 17 18 19 20 21 21 22 23 23 24 24 25 26 27 27 28 29 29 29</td>
</tr>
<tr>
<td>5'11"</td>
<td>14 15 15 16 17 17 18 19 20 20 21 22 23 23 24 24 25 26 26 27 28 28 28</td>
</tr>
<tr>
<td>6'0"</td>
<td>14 14 15 16 16 17 18 18 19 20 20 21 22 23 23 24 24 25 26 26 27 28 28</td>
</tr>
<tr>
<td>6'1"</td>
<td>13 14 15 15 16 16 17 18 18 19 20 20 21 22 23 24 24 25 26 26 27 27</td>
</tr>
<tr>
<td>6'2"</td>
<td>13 13 14 15 15 16 17 17 18 19 19 20 21 21 22 23 24 24 25 26 26 26</td>
</tr>
<tr>
<td>6'3"</td>
<td>12 13 14 14 15 16 16 17 17 18 19 19 20 21 21 22 23 24 24 25 26 26</td>
</tr>
<tr>
<td>6'4"</td>
<td>12 13 13 14 15 15 16 16 17 18 18 19 19 20 21 21 22 23 23 24 24 25</td>
</tr>
</tbody>
</table>

Obesity

Health Effects. Figure 6.13: Underweight and Obesity According to Country

- Correlated with higher risk of
 - Diabetes (type 2), Heart disease, High Blood Pressure, Stroke, Colon Cancer, Reduced lifespan
- Brain changes: reduced temporal lobe, cognitive decline, Alzheimer’s risk
- Doubled since 1980 in U.S., global epidemic
- Myths about Obesity
 - Lack of impulse control, poor eating styles, temptation to eat.

Obesity
Contributions of Heredity and Environment.
Figure 6.15: Correlations of Body Mass Index Among Twins
Figure 6.16: \textit{ob/ob} mouse

- Heritability
 - Obesity: 50-90%
 - BMR: 40%

- Genes
 - Obesity (\textit{ob})
 - Diabetes (\textit{db})
 - FTO gene (A allele)

- Environment
 - Epigenetic characteristics: gene expression changes due to environment (AgRP).

Obesity

Obesity and Reduced Metabolism

• **Basal metabolic rate (BMR):**
 • Energy required to fuel the brain and body
 • 75% of energy expenditure at rest.
 • Average: 1800 calories/day

• **Set Point** defended by shifting metabolism (increasing or decreasing energy expenditures)
 • 33% of women on restricted diet who didn’t lose weight had lower BMRs.
 • Prolonged weight change can shift the set point.
Obesity
Treating Obesity. Dietary Restriction versus Medication

• Dietary restriction is effective, especially when coupled with exercise (which increases BMR).
 • Formerly obese women- did they exercise afterwards?
 • YES: 90% kept the weight off
 • NO: 33% kept the weight off
 • Half of all calories consumed in U.S. were from carbs, and another 1/3 were from fats (as of year 2000)
• Medication is not as effective.
 • Drugs that work through increasing serotonin, *leptin and insulin, or through decreased fat absorption have been promising but do not work for all patients
 • All have significant side effects
Obesity

Treat as an Addiction
- Obese people share several characteristics with addicts.
- Reduced D2 receptors and prefrontal metabolism.
- Peptides that induce eating target dopamine neurons.

Anti-addiction drugs are showing effectiveness in weight loss.

Obesity

Treating Obesity. Figure 6.21: Gastric Bypass Surgery

- An option for the morbidly obese.
 - Weight loss averages 25% after 10 years, compared to 5%-10% with dieting and, most often, relapse within a year.
 - Reduces ghrelin and increases PYY and GLP-1, reducing hunger.
- Benefits include reduced mortality and many health improvements.
Anorexia, Bulimia, & Binge Eating Disorder

Figure 6.24: French Model Isabelle Caro in Late Stages of Anorexia

- **Anorexia nervosa**: The “starving disease.”
 - Restrictors - reduce food intake and exercise excessively to maintain weight
 - Hunger battle: NPY, ghrelin high; leptin low.

- **Bulimia nervosa**:
 - Binge and purge cycles, but usually normal weight
 - **Eat large meals, then vomiting food back up**
 - High relapse rates

- **Binge-Eating Disorder**
 - Eat large meals
 - Usually high weight
Anorexia, Bulimia, & Binge Eating Disorder
Environmental and Genetic Contributions

- Environmental contributions
 - Cultural emphasis on thinness, as seen in the Fiji study.
 - The incidence is higher in females, who experience more pressure.
- Genetic influence is suggested by:
 - Identical twins 3x more concordance than in fraternal twins
 - Heritability: 56% for anorexia, 54-83% for Bulimia, 45% for binge eating disorder
 - Adolescent stress, hormones, and dieting may produce epigenetic changes in genes
- Co-morbidity with obsessive-compulsive disorder (anorexia) and depression (bulimia).
Anorexia, Bulimia, & Binge Eating Disorder
Roles of Serotonin, Dopamine, and Cannabinoids

- Reduced serotonin activity
 - Bulimics
 - SSRI antidepressants increase serotonin, reducing bingeing and purging and lowers relapse rates

- Imbalanced ratio of serotonin receptors
 - Anorexics and bulimics have impaired executive control over emotional responses

- Low activity in cannabinoid, dopamine reward systems
 - Lack of enjoyment of food as well as other life pleasures.
 - Eating increases dopamine levels, and viewing pictures of food stimulates cannabinoid receptors in insular cortex of anorexics and bulimics
 - Eating also increases food-related anxiety. Therefore, food restriction, while not pleasurable, reduces anxiety.